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Abstract— Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically
and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including view (e.g., bar
and line charts), viewport (e.g., mobile vs. desktop), and coordination (e.g., exploration vs. comparison), along with expertise and
preference of the designer. Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical
MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on
MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area
ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior
probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many
insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, whilst those for
exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns.
On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization
datasets and more comprehensive design factors and properties.

Index Terms—Multiple-view visualization, layout design, Bayesian inference

1 INTRODUCTION

Multiple-view visualization (MV) is a specific technique that com-
posites multiple views in a cohesive manner, to enable simultaneous
data exploration from different perspectives [31]. As data are becom-
ing increasingly large, complex, and heterogeneous, MVs have been
extensively used for exploratory data analysis and visual analytics.
However, despite the ubiquity of MVs, it remains a challenging task to
arrange multiple views in a geometrically and topologically plausible
layout. Developers usually need to explore different possible layouts
through trail and error. Experience and expertise are required to create
visualizations that can effectively facilitate data analysis [29].

Many authoring tools have been developed to facilitate MV design,
such as Tableau [38] and Power BI [1]. The tools provide a set of
commonly used templates as prototypes for MV layouts, like sales
dashboard templates in Tableau. These predefined templates however
only cover a small portion of the diverse design space of MV layouts.
Some recent studies aim to reveal the design space of MV layouts, using
statistical analyses (e.g., [2, 9]) or interactive dashboard (e.g., [7, 46])
on empirical MV layouts curated from visualization publications. Chen
et al. [9] revealed some interesting design patterns regarding view
composition. For example, it is found that designers tend to position
diagram in the center of MVs, and they prefer to adopt simple and
perceptually accurate view types.

Besides view type, a number of works examine the impacts of other
design factors on MV layout design, such as viewport (e.g., [5, 15,
17–19, 33]), coordination type (e.g., [8, 23, 25, 31]), and expertise and
preference of designer (e.g., [13, 28]). Nevertheless, these studies
typically consider MV design from a single perspective, whilst effective
MVs require a comprehensive consideration of all these perspectives.
As a result, there is a lack of concrete design guidelines specifying
geometric (e.g., view size and position), and topological properties of
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MV layouts. Those existing guidelines (e.g., [30, 40]) have little to no
relevance to the geometric and topological properties.

This work aims to fill the gap, by modeling the effects of various
design factors, including view, coordination, and designer, on MV
layout design via Bayes’ rule. We focus on three important quantitative
metrics for MV layouts, i.e., maximum area ratio (MAR) and weighted
average aspect ratio (WAAR) as geometric metrics, and topology types
as a typological metric (Sect. 3.2). To achieve the goal, we first com-
plement a public MV dataset [9] with fine annotations of designer and
coordination information (Sect. 5). Viewport is omitted in the annota-
tion and consequently the analysis, since MVs in the dataset are mostly
designed for the desktop. We conduct an independence analysis using
the chi-squared independence test, and confirm that the design factors
are independent to each other (Sect. 6.2). Next, we construct Bayesian
probabilistic inference by updating the posterior probability of layout
metrics upon the design factors by penetrating MVs in the dataset,
and utilize chi-squared significant difference test to further check if
the effects are significant (Sects. 6.3−6.5). Through the quantitative
analyses, we reveal some insightful MV layout design patterns. For
example, coordination factor has the greatest influence on MV layouts,
wherein views of comparison coordination type exhibit more balanced
area ratios, whilst those of exploration have more scattered area ratios.

The main contributions of this work are summarized below:

• We complement a public MV dataset with information of designer
and coordination type. The dataset is available on https://
lingdan33.github.io/bayesmvlayout/ for further research
on MV layout design.

• We construct Bayesian inference models that describe the effects
of various design factors on MV layout design based on empirical
MVs in the dataset.

• We reveal some common MV layout design patterns, which can
potentially lead to concrete MV design guidelines.

2 RELATED WORK

Multiple-View Visualization (MV). MV is a specific visual data ex-
ploration technique that presents two or more views to show different
perspective of data [31, 40]. To design MVs, one needs to consider
how many views to be used, what kinds of coordination between views,
and how to layout and position views in a constrained viewport. The
process requires substantial expertise and experience of designers to
manage MVs in plausible layouts [13, 14, 28].
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• View. A view is formed after data transformation, visual mapping,
and view transformation [6]. To cope with various input data and
analytical tasks, many views types have been designed, e.g., bar
chart, line chart, etc. Views of different types can have distinct
geometric properties, including aspect ratio and view size, as
unveiled by a recent study [9]. When composing multiple views
into one MV, there can be potential conflicts between preferable
aspect ratio and size for individual view, and the overall geometric
plausibility of an entire MV layout. Hence, this work examines
the effects of view factor on MV layouts.

• Coordination. Views in MVs are mostly coordinated, i.e., a view
updates its content in response to users’ interactions in other
views [25, 34]. The visualization community have identified vari-
ous coordination types. A basic coordination type is to present
the data in various forms and offer linked interactions across mul-
tiple views, which helps users perceive insightful relationship and
facts from different perspectives. For example, VitalVizor [48]
integrates a spatial map and a metrics view to present spatial
and attributive information of urban vitality simultaneously. Be-
sides, multiple views can be arranged side-by-side to facilitate
comparison [12, 23]. Roberts [31] presented a taxonomy of co-
ordination types, and provided design guidelines for MV design
based on coordination among views. Yet the guidelines are rather
implicit. This work aims to provide more concrete MV layout
design suggestions based on coordination types.

• Viewport. Many MVs (e.g., [26, 44, 47]) have been developed
for exploratory data analysis and visual analytics in different
application fields. However, most of the MVs are designed for
the desktop. With the extensive popularity of mobile devices,
VR/AR, and display walls, more research has been shifted towards
designing visualizations beyond the desktop, e.g., mobile devices
(e.g., [5, 33]), multiple viewport setups (e.g., [15, 18, 19]), or even
distributed servers (e.g., [43]). These works have a common basis
of MV layout design shall be in line with the viewport.

• Designer. Designers may rely on their experience and expertise to
design effective visualizations. Grammel et al. [13] showed that
visualization novices only used simple heuristics and preferred
familiar view types (e.g.bar chart and pie chart) when constructing
visualizations. Pretorius and van Wijk [28] further reminded
designers to think from the user perspective in addition to their
experience. Nevertheless, no direct evidence has shown how
designers, as a factor in the designing process, affect MV layout
design.

This work aims to provide evidence-based guidelines for MV layout
design, by exploiting the effects of the above mentioned design factors
(except viewport) on empirical MV layouts. We opt for Bayes’ rule
that has been successfully applied in many other design problems.

Layout Design. Layout design focuses on finding feasible spatial
configuration for a set of interrelated objects. The quality of layout
design can be evaluated from two perspectives: geometry that specifies
the position and size of each object, and topology that specifies logical
relationships between objects [24]. Research on layout design spreads
in a wide range of applications, including interface design (e.g., [20,
37]), and architecture (e.g., [42, 45]). In this work, we focus on MV
layout that concerns view arrangement in a viewport.

The visualization community have proposed guidelines and revealed
practices for MV layout design. For example, Qu and Hullman [30]
suggested various constraints, validations, and exceptions for consis-
tency in MVs, while Chen et al. [9] conducted an in-depth analysis of
composition and configuration patterns of layouts in empirical MVs.
It is a general consensus that the design space for MV layout is huge.
Many studies adopt simplified heuristics for MV layout design. For
example, Sadana and Stasko [33] used vertical stacking or grid-based
layouts when design MVs on mobile devices, while Vistribute [15]
arranged multiple views across viewports by positioning similar views
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Fig. 1. Illustration of the design process for MV layouts: given the inputs of
multiple views (e.g., bar, line chart), coordination (e.g., exploration, focus
+ context), and viewport (e.g., desktop, mobile device), the designer
arranges the views in proper layout to achieve effective MVs.

side-by-side. As such, there is an emerging needs for modeling the ef-
fects of various considerations on MV layout design. This work makes
a contribution in this direction using Bayesian probabilistic inference.

Bayes for Design. Bayes’ theorem is used to describe the probability
of an event, given some prior knowledge of conditions that could be
related to this event. Compared with classical statistics, an unknown
fixed parameter value can be represented as a random variable in Bayes’
theorem. In other words, Bayesian statistics deals exclusively with
probabilities, so one can use it to determine the optimum decision to
take in the face of the uncertainties.

Many works in assisting design rely on Bayesian models learned
from existing design dataset. For example, Talton et al. [39] employed
Bayes’ rule to learn grammar production rules to parse web-pages.
Deka et al. [10] presented a method that can automatically generate
mobile UI by Bayesian model merging learning from UI data captured
by interaction mining. Dudley et al. [11] demonstrated the effectiveness
of Bayesian optimization in assisting interface design. Following in
line with these studies, this work also employs Bayes’ rule to infer
the effects of design factors on MV layouts, by updating the posterior
probability distribution of layout properties based on empirical MVs.

3 OVERVIEW

This section summarizes design factors for MV layout (Sect. 3.1), and
layout metrics considered in the work (Sect. 3.2).

3.1 Design Factors
Figure 1 presents a typical design process for MV layouts. Given a
set of views and predefined coordinations among the views, a designer
carefully arranges the views in the target viewport, yielding MVs of
various layout design patterns. We formulate the relevant design factors
in the following categories.

• View: There have been several view type taxonomies in the history
of data visualization (e.g., [21, 36]). In this work, we adopt the
taxonomy by Chen et al. [9] that categorizes views into 14 types
including 12 chart types of information visualization adopted
from Borkin et al. [4], along with SciVis and panel. Studies
(e.g., [2, 9]) have shown that different view types typically have
distinct layout design patterns, to maximize space usage and
optimize view expressiveness. This work extends these studies
with a probabilistic model that unveils the effects of view types
on layout design.

• Coordination: Chen et al. [8] recently developed a coordination
framework that generalizes coordination structures in terms of
composition of interactions and data transformations. The frame-
work was built upon a systematic review of coordinations from
existing theories and applications. Nevertheless, it is not feasible
to derive detailed coordination structures from static MV images



collected in papers. As such, we adopt a simplified classification
by Roberts et al. [31] that suggests six categories of coordination
types: 1) overview+detail, 2) focus+context, 3) difference, 4)
master/slave, 5) miniature views (often used in virtual reality),
and 6) small multiples. Some coordination types are not exclusive
when annotating, while some other coordination types are not
available in the dataset. In the end, we formulate categories of
coordination types as follows:

i. Exploration: For MVs in exploration coordination type,
each view encodes a different aspect (or dimension) of data.
Selection of an object in one view results in other views
highlighting the same object. From the statistic analysis
(see Figure 4), we find that exploration is the most common
coordination type.

ii. Focus+context: For MVs in focus+context coordination
type, there is a focused main view that allows for closer
inspection, and the other views are usually used for showing
context of the entire dataset.

iii. Comparison: Views of comparison coordination type can
be used for presenting different datasets, or the same dataset
in a different context (e.g., different years), or the exact
same dataset and context but from different angles for com-
parison and comprehensive presentation of the data.

• Viewport: Various types of viewports, such as desktop and mobile
device, have become the primary means of accessing informa-
tion. It is, therefore, becoming increasingly important to develop
multiple-view visualization that adapt to any viewport [32]. How-
ever, we find that most MVs (e.g., [26, 47]) in the MV dataset
are designed for the desktop. As such, this work considers the
desktop as the sole condition of viewport. We leave it to the future
work to consider other viewport conditions like mobile devices
and large displays.

• Designer: MV layout design is a creative process that depends
on expertise and preferences of designers [13, 14, 28]. Different
designers may have diverse preferences about choices of view
types, and positions and sizes of views, yielding different layouts.
Nevertheless, it is nearly impossible to quantify the expertise
levels and preferences of designers. Alternatively, this work
analyzes primary institute of designers of a MV, which can be
retrieved from the publications, as the condition for designer
factor.

3.2 Layout Metrics
Given a MV of n views, i.e., MV := {vi}n

i=1 where vi denotes a view,
we measure the following geometric and topological metrics:

• Geometry: Visualization conveys data and information in a lim-
ited display space. As such, space utility is a primary considera-
tion for MV layout design. In this work, we access the following
two metrics that reflect area and aspect ratio of space utility.

i. Maximum area ratio (MAR). For visualization design, space
allocation shall depend on the importance of data and in-
formation. We hypothesize that view areas are affected
by the above mentioned design factors. For example, in
MVs of focus+context coordination type, the focus view is
typically allocated a large space while the context view is
small, leading to a large MAR value. In comparison, views
of comparison coordination type typically have the same
size, thus the value of MAR will be relatively small. We
measure area ratio of the largest view to areas of all views
as:

MAR =
max(w(vi)×h(vi))

∑
n
i=1 w(vi)×h(vi)

,∀vi ∈MV, (1)

where w(·) and h(·) represent width and height of a view,
respectively. MAR ranges in (0,1), where values towards 1
indicate that MVs have a view in dominant size.

Topology Horizontal: Vertical: Hybrid:

Layout ...

Fig. 2. This work categorizes MV layouts into three topology types:
horizontal, vertical, and hybrid.

ii. Weighted average aspect ratio (WAAR). Proper aspect ratio
looks visual aesthetic and can effectively clarify a presenta-
tion. For instance, artists and architects typically proportion
their work to approximate the golden ratio of approximately
1.6180 (or 13:8). Aspect ratio has also been adopted for
evaluating visualizations, e.g., treemap design [3]. Chen
et al. [9] revealed that views of different types are usually
arranged in different aspect ratios. For example, aspect
ratio of bar charts usually ranges from 1/7 to 7, while that
of line charts usually ranges from 1/5 to 5. As such, this
work further examines how aspect ratios are affected by
view type and other design factors. Specifically, we use
WAAR to emphasizes views of larger sizes, in comparison
to unweighted aspect ratio used in treemap [3]. The metric
is measured as:

WAAR =
n

∑
i=1
{w(vi)

h(vi)
× w(vi)×h(vi)

∑
n
i=1 w(vi)×h(vi)

}. (2)

We figure out that WAAR ranges in [1, 8.5] in the dataset,
where close to 1 values indicate that the views are in bal-
anced aspect ratios like matrix arrangement.

• Topology: Topological structure of MV layout reflects visual in-
formation flow among views [22]. Chen et al. [9] figured out
about 100 layouts in existing MVs. Yet most of the layouts have
only one sample, which is not enough for Bayesian analysis. To
overcome the deficiency, we summarize the topology of MV lay-
outs into horizontal, vertical, and hybrid, as illustrated in Figure 2.
Horizontal topology arranges all views side-by-side horizontally.
There are three horizontal layouts identified in the dataset. Simi-
larly, vertical topology arranges all views side-by-side vertically,
and only three vertical layouts are identified. Hybrid topology
divides the display via slicing-and-dicing, and most layouts are
in hybrid topology. We would like to examine if the topology of
view layout is affected by the designer, similar to reading where
most Western languages go from left to right, whilst Arabic and
Hebrew are read from right to left, and some Asian languages
are read vertically. We count the frequency of topology types
on conditions of different design factors, and construct Bayesian
models to examine the impacts of design factors on the choices
of layout topology.

Table 1. Notations and their descriptions.

Notation Description

C The space of possible design factors
Ci One dimensional design factor
M The set of all MVs collected
L The set of all MV layouts derived from M

4 BAYESIAN INFERENCE FOR MV LAYOUT DESIGN

The ultimate goal of this work is to detect and model the effects of
design factors on MV layouts. We opt for Bayes’ rule to model the
design patterns, by inferring the posterior probability of layout metrics
given design factors observed in empirical MVs.

4.1 Definitions
To facilitate the discussion, Table 1 introduces common notations
adopted in the work. Here, we define the d-dimensional design space
of all possible design factors, C =

{
C1×C2× ·· · ×Cd

}
, where Ci



is the domain of ith design factor. As described in Sect. 3.1, this
work considers three dimensional factors, i.e., view (C1), coordination
(C2), and designer (C3). We learn design patterns from a MV dataset,
M = {MV1,MV2, · · · ,MVm}, and correspondingly the set of layouts
L derived from M . This work considers three-perspective layout
metrics of MAR, WAAR, and topology, which are denoted as Lmar,
Lwaar, and Ltopo, respectively. Each MV can be encoded as a tuple
in the form of (view, coordination, designer). For example, the MV in
Figure 3 is originally encoded as

([table, map, map, grid, bar, point],
[comparison, exploration],HKUST ),

indicating that the MV comprises one table (Figure 3(a)), two maps
(Figure 3(b1 & b2)), one gird (Figure 3(c)), one bar chart (Figure 3(d)),
and one point chart (Figure 3(e)); the MV has both comparison and
exploration coordination types; and its primary institute is HKUST.

Note that each dimensional design factor involves various discrete
data values. For example, we identify 128 primary institutions in
the MV dataset (see Sect. 5.2), i.e., |C3| = 128 if we consider each
individual institute. Nevertheless, this will yield excessive discrete
data values, hindering Bayesian inference. We overcome the deficiency
by clustering institutes into groups based on continent (see Sect. 6.2).
Similarly, we categorize all possible data values of view dimension (C1)
by considering if the MV contains a specific view type or not, e.g., bar
chart. We keep coordination dimension (C2) as origin since the number
of coordination data values is small. In this way, the above tuple can be
simplified as

(with bar, [comparison, exploration], Asia).

4.2 Modeling

The model is used to explain the probability of events occurring. Given
a set of design considerations C , we need to formulate a predictive
probability distribution over the design space of possible MV layouts.
But before we formulate a predictive probability distribution, we need
to formulate the posterior distribution,

P(~µ|C ) ∝ P(C |~µ)P(~µ), (3)

where ~µ is a K-dimensional vector which describes the probability of
each layout, P(C |~µ) is the likelihood of the set of design considera-
tions C given a particular ~µ , and P(~µ) is the prior of MV layouts.

• Prior. In our work, the three variables of design factors (i.e., view,
designer, and coordination) are all categorical. Their observed
values conform to a polynomial distribution, so we set the prior to
the Dirichlet distribution. For the domain of L with K possible
categories, we define a K-dimensional vector ~µ to describe the
probability of observing each of the K categories. And we assume
that the prior distribution over all values of ~µ is the Dirichlet
distribution with parameter ~α

P(~µ) = Dirichlet(~µ|~α)

=
Γ(∑K

k=1 αk)

∏
K
k=1 Γ(αk)

K

∏
k=1

µ
αk−1
k .

(4)

• Likelihood. After we label the dataset and make statistics, we
know the observation counts for each of the K possible categories.
We denote the observation count for the category i with mi and
denote the total count of the dataset with N. Given a particular ~µ ,
the likelihood can be calculated as follows

P(C |~µ) =
(

N
mim2...mk

) K

∏
k=1

µ
mk
k . (5)

c

b1 b2a b1b1

d e

Fig. 3. Annotating coordination types for StreetVizor [35]. Views b1 & b2
are side-by-side maps for comparison, thus being labeled as comparison.
Views a, b1, b2, c, d, & e explore street views from different perspectives,
thus being labeled as exploration.

We define a K-dimensional vector ~m to describe the observation count
mi. By combining Equations 3 − 5, we can calculate posterior proba-
bility

P(~µ|C ) ∝ P(C |~µ)P(~µ)
= Dirichlet(~µ|~α +~m)

=
Γ(N +∑

K
k=1 αk)

∏
K
k=1 Γ(αk +mk)

K

∏
k=1

µ
αk+mk−1
k .

(6)

Similar to continuous cases, our prior and posterior in the discrete
scenario are also conjugate distributions. The Dirichlet prior for dis-
crete attributes has only one parameter: ~α . Since the number of MV
designs in the dataset is limited, we use Laplace smoothing to avoid
the condition when predictive probability is calculated to be 0. We
set ~α to be a vector of K equal numbers (1.0), which constitutes a uni-
form distribution across all possible MV layouts. Finally, we integrate
our updated belief over all possible values of ~µ to get the predictive
probability for a given layout Li

P(Li|C ) =
∫

P(Li|~µ)P(~µ|C )

=
αi +mi

∑
K
k=1(αk +mk)

.
(7)

5 DATA PROCESSING

This work is built upon the MV dataset collected by Chen et al. [9]. The
dataset consists of 360 MV images collected from publications in IEEE
VIS, EuroVis, and IEEE PacificVis conferences 2011 - 2019. Each
MV image comprises two or more views. Type (e.g., bar chart, line
chart, etc.) and bounding box (including center position and size) of
each view have been marked by the authors. With the information, one
can feasibly analyze view type compositions and layout configuration
patterns of MV design [9]. The work requires additional information
of coordination types and designers. We make up the information by
labeling coordination types and designers (Sect. 5.1). Next, we conduct
a preliminary analysis to reveal characteristics of the dataset (Sect. 5.2).

5.1 Dataset Construction
In the MV dataset [9], a view is classified into one of 14 view types,
including 12 chart types of information visualizations [4] + SciVis +
panel. However, panels are usually used for controlling visualization
parameters or displaying legends and colormaps. It is infeasible to
classify the coordination type of panels with other views. Thus we
omit MVs comprising only one view of information visualization or
SciVis, along with one or more panels. This process yields 303 MVs
for further analysis. Next, we adopt the following annotating strategies
for labeling coordination and designer.

• Annotating coordination. Coordination is a mutual relationship
among two or more views. A MV consists of multiple views,
and these views can form several coordination relationships. As
shown in Figure 3, the StreetVizor system [35] employs two map
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Fig. 4. Top 10 primary institutions (left) and percentages of coordination
types (right) of MVs in the dataset.

views (b1 & b2) to compare spatial distribution of street views in
two different cities. Hence, we annotate the coordination type for
views b1 & b2 as comparison. Besides the map views, StreetVizor
also employs a table view (Figure 3 (a)) for multi-scale navigation
and feature filtering, along with three statistic views (Figure 3 (c,
d, & e)) for presenting quantitative measurements. As such, we
also annotate the coordination type for views a, b1, b2, c, d, &
e as exploration. In this way, coordination types for the MV are
labeled as [comparison, exploration].

To annotate coordination types, we add a component to the la-
beling tool developed by Chen et al. [9]. With the component,
users can indicate which views are coordinated, and what is the
type of coordination. For most MVs, one can directly identify the
coordination type among views by looking at the visualization im-
ages. Nevertheless, there are cases that are hard to justify. In such
scenarios, we refer to the corresponding publication, and identify
the coordination type by carefully examining the visualization
image’s caption and description in the main text.

• Annotating designer. There are two perspective information of
designer in a MV. First, we can create a bipartite graph with set
of MV as one part, and set of author as another part. An edge
between a MV and an author indicates the author is a designer of
the MV. However, a MV can be connected to several authors, be-
ing unsuitable for Bayesian analysis. As such, we opt to generate
a bijection graph that maps one-to-one correspondence between
MV and primary institute of the first author, i.e., a MV has one
and only one primary institute. In this way, we can feasibly access
the impacts of designers on MV design. We can further cluster
primary institutes by properties like continent, to check if MV
design is dependent on geographic location.

We add the newly annotated coordination and designer information
to the JSON file by Chen et al. [9]. Together with view type and layout
information recorded in the original file, we can conduct Bayesian
inferences on layout design for MVs.

5.2 Feature Characteristics
We analyze characteristics of MVs in the dataset prior to Bayesian
modeling. Figure 4 presents the analysis results. On the left, the
top 10 primary institutions are presented. From the figure, HKUST
published the most number of 20 articles using MVs, showing its
productivity in the field. Besides, Georgia Tech., Purdue University,
Zhejiang University, University of Stuttgart, and TU/e have over 10
publications. Together with Peking University, institutes from China
are remarkably active in developing MV systems. There are in total
128 primary institutions that have at least one MV publication in the
dataset. Average number of MVs by an institute is 2.37 or so, and
median value is 1. All the institutes are located in three continents,
i.e., Asia, Europe, and America (both North and South America). On
the right, the figure shows percentages of coordination types. Here we
can see that exploration is the most popular coordination type in the
MVs, indicating that the technique is mainly used for data exploration
from different perspectives. Comparison is the second most popular
objective for MVs, followed by focus+context. Notice that a MV can
have multiple coordination types. We count all coordination types in
these cases.

Other than primary institutions and coordination types, we also
analyze frequency of view types and layout topology. The results are
similar to those in Chen et al. [9]. For instance, we found that 1) bar
and line charts are the most frequently used chart types, whilst SciVis
and circle chart have the least usage; and 2) simple layouts are more
frequently used. Interested readers are referred to Chen et al. [9] for
detailed analysis.

6 ANALYSIS RESULTS

This section first introduces chi-squared test (Sect. 6.1), followed by an
independence analysis on the design factors (Sect. 6.2). In the end, we
present in-depth analyses for effects of design factors on layout metrics
(Sect. 6.3−6.5).

6.1 Chi-Squared Test
This work uses the chi-squared test to check 1) if the design factors are
related, denoted as independence test; and 2) whether there is a statis-
tically significant difference between the expected and the observed
frequencies, denoted as difference test. The formula is:

X 2 = ∑
(Oi−Ei)

2

Ei
, (8)

where Oi denotes the i-th observed frequency, and Ei denotes the i-th
expected frequency in theory. The calculated X 2 value is then com-
pared to the critical value from the X 2 distribution table with degrees
of freedom and chosen confidence level. Specifically, we conduct the
following analyses when testing independence and difference.
Independence test proposes a null hypothesis H ′0: the two variables
A,B are independent to each other. The test firstly assumes that H ′0
is true, i.e., P(A,B) = P(A) ∗P(B). According to this condition, the
expected frequency for every combination of variable A and B is calcu-
lated. For example, in Table 2, the expected frequency of {C21,Asia}
is: f{C21,Asia} = P(C21,Asia)× total = P(C21)× P(Asia)× total =
191/303× 74/303× 303 = 46.65, while the observed frequency is
40. With all the observed and expected frequencies, the X 2 = 17.81
is derived. The degree of freedom here is d f = (|A|−1)× (|B|−1) =
(3−1)× (6−1) = 10. In this way, we can conclude that the designer
and coordination variables are independent for MV layout design at
the significance level 0.05.
Difference test proposes a null hypothesis H0: there is no significant
difference in variable A among N groups of data. The degree of freedom
is denoted as (|A|−1)× (N−1), where |A| is the number of categories
or bins of the variable A. This test firstly postulates that H0 is true, and
calculates the X 2 that represents deviation degree among N groups of
data. With the calculated X 2 and the degree of freedom, one can get
the the probability P supporting H0 from the chi-squared distribution
table. Given a user-defined alpha level of significance, the hypothesis
H0 is accepted or rejected by comparing P with the alpha level. In
this work, since the size of our dataset is relatively small, we set the
alpha level to 0.05. Moreover, we assume that the expected frequency
is uniform, while the observed frequency is the posterior probability of
Bayesian model.

6.2 Independence Analysis
To use Bayes’ rule to model effects of design factors on MV layouts,
we need to first verify the design factors are independent from
each other. As described above, there are too many raw values of
view and designer factors observed from the data, hindering Bayes
inference. To overcome the deficiency, this work groups designer
values into three categories, i.e., Asia, Europe, and America, and
groups view values into two categories based on the existence of a
specific view type, e.g., with and without bar chart. There are in
total six coordination conditions observed in the dataset, i.e., C2 ={
[exploration], [comparison], [ f ocus+context], [exploration, compari

son], [exploration, f ocus+context], [comparison, f ocus+context]
}

.
Note that the observed coordination conditions indicate that a MV
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Table 2. Contingency table of designer by continent of the primary
institute and coordination factors.

C21 C22 C23 C24 C25 C26 Sum
Asia 49 3 1 0 17 4 74
Europe 53 11 6 3 16 0 89
America 89 7 11 2 28 3 140
Sum 191 21 18 5 61 7 303

contains at most two types of coordination at the same time. As such,
we keep coordination factor in its raw format.

After converting all the design factors into categorical variables,
we use the independence test verify the chi-squared independence
among the design factors. Table 2 presents a contingency table between
designer and coordination factors, where C21−C26 denote the six con-
ditions under coordination type. Here, we form a null hypothesis that
the two design factors (i.e., coordination and designer) are independent,
and to get the expected frequency for each combination. The indepen-
dence test gives a value of 17.81, with P > 0.05 given d f = 10. As
such, the null hypothesis is accepted. In the same way, we calculate the
X 2 values between designer and view, and between coordination and
view. The maximum X 2 value between designer and view is 5.31 with
P = 0.07, and X 2 value between coordination and view is 10.554
with P = 0.61. Thus, all the three design factors are independent to
each other.

6.3 Modeling Effects of Design Factors on MAR
In this section, we analyze the effects of different design factors on
MAR. MARs of all MV layouts in the annotated dataset are within the
range [0, 0.9]. As such, we first divide the value range of MAR into
nine equal intervals of length 0.1. Next, we use the Bayesian inference
model as described in Sect. 4 to calculate the posterior probability
distribution of MAR under different conditions. Finally, we form a
null hypothesis that the expected distribution of posterior probability
distribution is uniform, and use chi-squared difference test to verify
whether the design factor influence is significant or not.

Through the analysis, we find design patterns as follows.

• View: We first calculate the probability distributions of MAR upon
the condition view type. As described above, we categorize MVs
based on the existence of a specific view type. We first examine
which view type has the most significant effects on MAR for each
of the 13 view types (panel is omitted), by measuring probability
distributions of MAR for MVs with and without the view type.
We find that line chart has the greatest effect on MV layout among
the 13 view types. Its X 2 value is 18.187 and P = 0.020.

Figure 5(right-1) presents the posterior probability distributions
of MARs for MVs with and without line chart. The expected
value for MAR is 0.357 when MVs have line chart, whilst the
value increases to 0.436 when there is no line chart. Specifically,
MARs for MVs with line chart are concentrated in the range [0.1
- 0.5], whilst those without line chart are more concentrated in the
range [0.2 - 0.6]. Taking a1 & a2 and d1 & d2 in Figure 5(left) for
example, their coordinations are all comparison. The difference is

that line charts exist in a1 & d1, but not d1 & d2. Figure 5(right-
1) shows that MARs for a1 & a2 are within [0.1 - 0.2], while
those for d1 & d2 are within [0.3 - 0.4]. This is probably because
line charts typically have a wide aspect ratio, which shrinks the
display space for other views.

• Coordination: In the same way, we calculate the probability dis-
tributions of MAR upon different coordination types. The X 2

value is 128.104 and P = 3.72E−11, which means that coordi-
nation has a bigger effect on MARs than view. Figure 5(right-2)
presents the posterior probability distributions of MARs for MVs
of coordination type exploration, comparison, and focus+context.
MARs of MV layouts of exploration coordination type are con-
centrated in the interval [0.3 - 0.6], those of comparison are
prominent within [0.1 - 0.2], whilst those of focus+context have
higher probabilities falling in [0.5 - 0.7].

Overall the observations coincide with our expectations. When
the main purpose is for comparison, MVs typically adopt multiple
views of the same size; see examples in column 1 of Figure 5(left).
In such cases, all views share a small area ratio, and MARs of
the MVs are limited. Yet, it is surprisingly to notice that the
MARs of comparative MVs are concentrated in [0.1 - 0.2]. We
find that many cases are SciVis interfaces that arrange multiple
views side-by-side, as shown in Figure 5(a1). In contrast, MVs
of focus+context coordination type typically have a focus view
that dominates the display space; see examples in column 3 of
Figure 5(left). MVs of exploration coordination type are relatively
more balanced, in comparison with the other two types.

• Designer: Last, we calculate the probability distributions of MAR
of MV layouts upon conditions of Europe, Asia, and America
designers. The X 2 value is 8.713 with P = 0.925. As such, the
effect of designer on MAR is regarded to be insignificant. We
skip further analysis for the effects of designer on MV layouts.

Summary: Coordination type of views in MVs is the dominant de-
sign factor for determining the maximum view size in MVs. From
the Bayesian analyses, MVs of comparison coordination type tend to
use multiple and balanced view sizes, whilst MVs of focus+context
coordination type tend to make the focus view dominant. View compo-
sition also has an effect on MARs, but not as significant as coordination.
There is no obvious difference between MARs of MVs by designers in
different continents.

6.4 Modeling Effects of Design Factors on WAAR
WAAR that reflects the average aspect ratio of all views weighted by
view sizes, is another geometric metric used in this work. We derive the
range of WAARs is 1.0 to 8.5, for all MVs in the dataset. Notice that
WAAR is always larger than 1, as the MVs are designed for desktops of
wide screen sizes. Specifically, we notice that WAARs are concentrated
in the interval [1.0 - 3.0], and those above 4.5 are rare. As such, we
decide to divide the values into seven intervals with the step size of 0.5
for WAARs in the range 1.0 to 4.5, and the remaining WAARs above
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Fig. 6. Posterior probability distributions of WAAR when MVs are catego-
rized by having area chart on the left, and having table on the right.

4.5 are grouped into a separate interval. Next, we construct Bayesian in-
ference models that derive posterior probability distribution of WAARs
under different conditions. We use chi-squared difference test to mea-
sure the significance of the design factors on WAAR. Similarly to
MAR, we also find that both coordination factor has significant effects
on WAAR, whilst designer factor has no significant effect. X 2 value
for designer factor is 13.052, with a P value of 0.522. Interestingly,
we find that categorization by different view type has dynamic effects.
Here, we examine the probability distribution of WAAR under MV
categorization based on the existence of a specific view type. We find
that only categorization by area chart has a significant effect on WAAR.
Specifically, the X 2 value is 18.733, and P = 0.009. Categorization
by all other view type has P > 0.05.

Figure 6 presents a comparison between the posterior probability
distributions based on categorization by area (left) and by table (right).
We can find that:

• Categorization by Area Chart: The probability distribution of
WAAR is concentrated in [1.0 - 2.0], regardless of MVs with or
without area chart. This indicates that most views tend to have
average aspect ratios, and that their areas are relatively balanced.
The most likely interval distribution for WAAR containing area
chart is between 1 and 1.5, whilst those without area chart is most
likely in 1.5 to 2. This means that the MVs with area chart has
more balanced aspect ratios, probably because most area charts
have similar widths and heights.

• Categorization by Table: In contrast, we can find that the posterior
probability distribution of WAARs are more similar for MVs with
and without table chart, in all intervals. As such, categorization
by table has no significant impacts on WAARs.

Summary: Designer factor have no obvious impacts on WAAR of
MV layouts. The most significant factor influencing the distribution of
WAAR is coordination design factor. Categorizing MVs based on area
chart has a significant impact on WAAR. MVs having area chart are
more likely to have balanced aspect ratios.

6.5 Modeling Effects of Design Factors on Topology
Layout topology determines the arrangement of views in MVs. Here,
we divide the topology of MV layouts into horizontal, vertical, hybrid.
In the similar way, we conduct Bayesian inference analysis to examine
the effects of design factors on layout topology.

• View: For each of the 13 view types, we conduct a comparative
analysis, which shows that SciVis have the biggest influence on
layout topology, with X 2 = 10.082 and P = 0.006. As shown
in Figure 7(right-1), we can find that MVs with SciVis have a
higher probability to be in horizontal layout, than those MVs
without SciVis. An example is Figure 7(a), which arranges two
SciVis views side-by-side for comparison.

• Coordination: We find that coordination is the most significant
influencing factor with a X 2 value of 121.297 and a P value of
2.7592e−21. We calculate the posterior probability distributions
of layout topology for different coordination types. The results
are shown in the Figure 7(right-2). Here, when coordination
is exploration and focus+context, the probability distribution is

focused on hybrid. This is probably because layout of exploration
requires different views to display different data. In contrast, the
layout topology of comparison is more focused on the horizontal.

We show some examples on Figure 7(left). We divide the ex-
amples into groups based on coordination and the existence of
SciVis views. Here, both Figure 7(a) with SciVis and Figure 7(d)
without SciVis tend to have a horizontal layout topology when
coordination is comparison, whilst Figure 7 (b & c)) containing
SciVis and coordination of exploration or focus+context have a
hybrid layout topology.

• Designer: The X 2 value and P value of designer is 5.846 and
0.211, i.e., designer factor has no significant impact on layout
topology. Figure 7(right-3) shows the posterior probability distri-
bution of layout topology upon designer. No significant difference
is observed among designers from Europe, Asia, and America.

Summary: View and coordination design factors have a certain influ-
ence on layout topology, and the impact by coordination is the most
significant. Given exploration and focus+context coordination types,
hybrid layouts are more likely to be used. In contrast, MVs of compari-
son coordination type tend to adopt horizontal layouts. Similar patterns
are observed for MVs with and without SciVis views.

7 CONCLUSION, DISCUSSION, AND FUTURE WORK

This work constructs a Bayesian probabilistic inference framework that
reveals MV layout design patterns on the conditions of three design
factors, i.e., view, coordination, and designer. Specifically, we focus
on three metrics that describe the geometric (MAR and WAAR) and
topological (layout topology) properties of MV layouts, and derive
posterior probability distribution of the metrics derived from MVs in a
new dataset. Based on this framework, we conduct in-depth analyses
that reveal the effects of design factors on MV layouts. We summarize
some valuable MV layout design patterns as follows.

• Coordination is the dominant design factor that has the most sig-
nificant effects on MV layout design. Specifically, MVs of com-
parison coordination type are more likely to have balanced area
ratios and be in horizontal layout, whilst those of focus+context
are more likely to have a focus view with big size and be in hybrid
layout.

• MVs with line chart are more likely to have lower MARs and be
in vertical layout topology. Area chart has a significant effect on
WAAR −MVs with area chart tend to have smaller aspect ratios.
MVs with SciVis tend to be in horizontal layout.

• Designers categorized by continent have little to no significant
impacts on MAR, WAAR, and layout topology.

This work makes a prominent starting point for a thorough under-
standing of MV layout design patterns. Currently we only analyze the
impacts of a single design factor. Nevertheless, the proposed Bayesian
probabilistic inference framework is flexible enough to be extended
to other design factors. For example, in the annotation stage, we also
noticed that MV layouts seem to be very different over time. MVs in
early days seem to be more regular and in grid layout, whilst latest
MVs seem to be more diverse. A possible reason is that new libraries
and tools, which allow easy creation of diverse MV layouts, have
emerged. The framework can also support further analyses like design
factor combinations, since the framework can operate regardless of MV
layout properties or dataset. Nevertheless, certain conditions such as
independence analysis shall be conducted before using naive Bayesian.
Limitations. Nevertheless, there are certain limitations in our work.
First, the MV practices in the dataset are mostly deployed for the
desktop usage, thus we ignore viewport design factor in this work. A
more comprehensive factor set would certainly provide more valuable
insights. Second, we regard primary institute of the first author as
design factor for designer. Nevertheless, this is not a good indicator
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for designer who really chooses the MV layout, and international
collaboration among designers from different countries are becoming
more popular. This may also be the main reason why designer has no
significant impact on MV layout design. Third, our current analysis on
layout topology is based on three categories (i.e., horizontal, vertical,
and hybrid) of MV layouts. Hybrid layouts dominate the MVs in the
dataset, which potentially affect the analysis results. A more reason
categorization is to use the visual information flow [22] among views.
Future work. There are several promising directions for future work.
First, we plan to expand the MV dataset by including MVs from other
sources like the Internet and Tableau Public. Doing this can enrich
the diversity of MV layouts. However, layout design of these MVs
may not be in the same quality with those collected from visualization
publications. We shall come up with some selection strategy to ensure
the quality. Second, we would also like to enrich information of the MV
dataset, such as to include more design factors like viewport. There is
a recent trend in developing visualizations for viewports beyond the
desktop, such as on mobile devices (e.g., [16, 41]) and in virtual reality
(e.g., [27, 49]). We call for close collaborations in the visualization
community for constructing such a comprehensive dataset. In addition,
our current models are based on naive Bayesian analysis that can only
give probability distributions for model inference. We would like to
explore the possibility of developed a recommendation system using
the Bayesian analysis results for automating the design process of MV
layouts. This again requires a new dataset with fine annotations. Last
but not least, we look forward to integrating the results into existing
visualization authoring tools, such that the tools can warn users of
abnormal MV layout design, e.g., the MAR value of a MV is out of
range given certain design factors. We envision that such a tool will
help users design effective MV layouts.
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