
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 1

Deep Recognition of Vanishing-Point-Constrained
Building Planes in Urban Street Views

Zhiliang Zeng , Mengyang Wu , Wei Zeng , Member, IEEE and Chi-Wing Fu , Member, IEEE

Abstract—This paper presents a new approach to recognizing

vanishing-point-constrained building planes from a single image

of street view. We first design a novel convolutional neural net-

work (CNN) architecture that generates geometric segmentation

of per-pixel orientations from a single street-view image. The

network combines two-stream features of general visual cues

and surface normals in gated convolution layers, and employs a

deeply supervised loss that encapsulates multi-scale convolutional

features. Our experiments on a new benchmark with fine-grained

plane segmentations of real-world street views show that our net-

work outperforms state-of-the-arts methods of both semantic and

geometric segmentation. The pixel-wise segmentation exhibits

coarse boundaries and discontinuities. We then propose to rectify

the pixel-wise segmentation into perspectively-projected quads

based on spatial proximity between the segmentation masks and

exterior line segments detected through an image processing.

We demonstrate how the results can be utilized to perspectively

overlay images and icons on building planes in input photos, and

provide visual cues for various applications.

Index Terms—Image segmentation, plane reconstruction, aug-

mented reality, geometric reasoning, vanishing point, street view

I. INTRODUCTION

M
ANY applications and games on smartphones and see-
through glasses have been developed to enrich our

views of the physical world. Typically, they provide context-
aware information through a virtual overlay on the real scene.
Yet, it remains challenging to naturally incorporate virtual
objects in views of the physical world, since object placements
in reality are governed by physical rules [35]. For instance,
without considering the rules, a virtual cup would appear to
float in mid-air instead of resting on a table. To improve the
virtual object incorporation, one common approach is to align
virtual objects with planar surfaces [25], [35], which however,
are not readily available in reality.

To recognize planes, one can register the scene with prior
knowledge, e.g., physical markers. However, the approach is
clearly incompetent for supporting city-scale image overlay
applications. In comparison, vision-based tracking techniques
are more ubiquitous and practically feasible for general scenar-
ios [54]. Thus, recent tools are mostly devoted to recognizing
planes in camera views without explicit markers.

Conventional image processing and understanding meth-
ods [21], [22], [41], [18] make use of handcrafted visual cues
to recognize planes, e.g., color, texture, and gradient. With

Z. Zeng, M. Wu, and C.-W. Fu are with the Chinese University of Hong
Kong. e-mail: {zlzeng,mywu,cwfu}@cse.cuhk.edu.hk.

W. Zeng is with SIAT, Chinese Academy of Sciences. W. Zeng is the
corresponding author. e-mail: wei.zeng@siat.ac.cn.

Manuscript received October 17, 2019; revised February 21, 2020.

(a) Input Image (b) Plane Segmentation

Left Right Central Bottom

(c) Plane Rectification (d) AR Applications

L1

L2

L3
L4

Fig. 1. From a single image of street view (a), we predict pixel-wise plane
segmentations (b) and rectify them into perspectively-projected quads (c) that
are more suitable for overlaying images/icons (d).

the success of deep learning, great advancements have been
achieved that can directly extract features from imagery data to
infer per-pixel geometric properties. However, due to the lack
of plane annotations, recent network-based methods [45], [30],
[29], [52] are supervised by depth map, then further infer and
refine plane geometry based on the depth predictions. Clearly,
acquiring a noise-free depth map is a difficult task, especially
in outdoor environments like street views.

To overcome limitations of the depth-map methods, we
propose a new approach as depicted in Fig. 1. Given an input
street-view image (e.g., Fig. 1(a)), we first roughly locate
planar regions for buildings and ground in the image view;
see Fig. 1(b). Here, we color-code each region according to its
orientation in respective to camera position, e.g., blue for the
right- and yellow for bottom-oriented, etc. Just like the outputs
from many existing neural networks for image segmentation,
the extracted regions often exhibit coarse boundaries and dis-
continuities, thereby insufficient for supporting image overlay
applications, which expect rectified planar surfaces [15], [14].
As illustrated in Fig. 1(c), the geometry of each (perspectively-
projected) building and ground region can be approximated
by a quad region in the image space. For the case of building
regions, the quad would possess a pair of vertical lines and a
pair of nearly-horizontal lines that meet at a vanishing point.
By rectifying a quad and obtaining the associated projection,
we can then arrange virtual objects and texture images as an
overlay on the corresponding buildings; see Fig. 1(d).

https://orcid.org/0000-0002-6538-2340
https://orcid.org/0000-0001-9989-7118
https://orcid.org/0000-0002-5600-8824
https://orcid.org/0000-0002-5238-593X

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 2

Yet, to achieve the goal is non-trivial. First, urban scenes
often have variant lighting conditions and clutter objects.
Geometry-based approaches relying on geometric primitives
(e.g., line segments [6], [16] and vanishing points [40], [46])
are prone to fail for occlusions such as pedestrians and trees.
Second, outdoor scenes typically exhibit much more complex
geometry than indoor ones. Geometric reasoning methods
for inferring layouts of indoor scenes, which assume simple
geometric properties including corner connections [28] and
boxy configurations [32], [13], [27], are not applicable hereof.

Instead, we propose to rectify coarse plane regions by
exploiting their associations with line segments. Our main
insight is that plane regions in an urban scene are mostly
artifacts such as grounds and facades, which embrace a
wide variety of straight lines like edges of windows and
roads. At the core of our method, we first design a novel
plane segmentation network that predicts pixel-wise plane
orientations in respective to camera position. To improve
segmentation accuracy, we leverage gated convolutional layers
that integrate two-stream features of general visual cues and
surface normals, and a deeply supervised loss that encapsulates
multi-scale convolutional features. Next, we infer correlation
between line segments and plane segmentation masks based on
their spatial proximity. This filters out line segments irrelevant
to plane regions, and limits the feasible sets of line segments
to these which share the same orientation label. Lastly, we
infer one horizontal and one vertical vanishing point for each
set of line segments, by which we can deduce four intersecting
lines forming a perspectively-projected quad.

The main contributions of our work are:
• We build a new benchmark of street-view images

with fine-grained orientation labels from three different
metropolises in the world (Sec. IV-A).

• We design a novel CNN architecture with gating mech-
anism and deep supervision to improve plane segmenta-
tion (Sec. III-B). Experiment results reveal comparable
advancements over state-of-the-art networks for semantic
and geometric segmentations (Sec. IV-B).

• We propose to rectify coarse plane segmentations into
quads based on their spatial proximity with line segments
(Sec. III-C), and demonstrate the use of these rectified
quads for overlaying virtual objects on building planes in
urban street views (Sec. V).

II. RELATED WORK

Augmented reality (AR) aims to seamlessly interweave vir-
tual contents with the physical world [25], [26]. One feasible
solution is to spatially align virtual objects with planes in
real environments [35], [15]. This requires not only precise
plane regions, but also their geometric properties such as
orientation and perspectives. For instance, to overlay arrow
icons on ground for navigation, we need a quad plane beneath
the camera, and its heading to guide the arrow direction. To
obtain the information, a conventional approach is to register
the scene with a database of the reality (e.g., markers, 3D
reference models) using key features, such as the prominent
lines [38], building silhouettes [24], symmetry and repetition

patterns [14]. Such a database, however, is often not readily
available. Therefore, plane recovery by image understanding
without prior is regarded as a more feasible approach [54].

This work is related to augmented reality, but focuses
mainly on detecting quad planes in single-view images that
are typically urban street-view photos. The detected planes can
be utilized to facilitate real and virtual objects combinations,
serving as a component in general AR systems [3]. Particu-
larly, to handle street-view photos, the challenges include the
occlusions and complex geometry in outdoor urban scenes. We
hereby develop a new framework that first utilizes advanced
CNN techniques of gating mechanism and deep supervision to
predict plane regions, and further rectifies the regions based
on their spatial proximity with line segments.

Image segmentation infers scene context by dividing an im-
age into regions, each corresponding to a semantic object (e.g.,
vehicle, pedestrian) or a geometric context (e.g., orientation to
camera). Overall, the problem can be modeled as a multi-class
classification task, which can be addressed by a flat classifier
(e.g., Boosting [44], Random Forests [43]) using hand-crafted
features. Performance relies on the expressiveness of the
features, which however, are unlikely robust for complex urban
scenes. Benefiting from the advancements of deep CNN-based
models (e.g., FCN [42], DeconvNet [34], SegNet [4], and
DeepLab [8]), and fine-labeled datasets (e.g., [5], [2], [10]),
recent researches on image segmentation of urban scenes have
reached a new level in terms of accuracy and generality.

For plane segmentation, conventional methods [21], [22],
[41], [18] relied on general visual cues, e.g., textures, colors,
and gradients. Recently, end-to-end CNNs [45], [29], [30], [52]
improved the performance by formulating plane segmentation
as a supervised depth prediction problem. The prior studies
inspired us that both general visual cues and surface normals
(closely related to depth information [37]) can be utilized to in-
fer plane regions. We thus encapsulate the two-stream features
using a gating mechanism, which has shown to be effective for
various image segmentation tasks [36], [48]. Furthermore, we
enrich convolutional features [31] by integrating hierarchical
feature maps into the loss function. Experimental results reveal
comparable advancements over the latest networks.

Geometric reasoning methods make use of geometric prop-
erties of objects and relationships between objects to recover
the surface layout of a scene [17]. Unlike pixel-wise image
segmentation, the methods can generate well-structured quads
that are preferable for image overlay applications. A well-
known example is the ‘Manhattan world,’ which assumes that
planes of an artificial scene lie in one of the three mutually
orthogonal orientations [11]. This assumption provides a basis
for researches on indoor surface layout estimation by delin-
eating a box model [20], [28], [32], [13], [27]. Nevertheless,
planes in outdoor scenes have more complex layouts, thus
limiting the applications of this simple boxy configuration.
Some others are devoted to analyzing the geometry of outdoor
scenes, e.g., [33], [17], [51]. A typical example is [33].
The method first localizes line segments through Canny edge
detector, then applies Markov Random Field to construct a
graph structure to group the line segments, and finally parses

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 3

LSD

Input Image

(b) Plane Rectification

(c) Quad Planes

(a) Plane Segmentation

VPh

VPv

Fig. 2. An overview of our approach. (a) The plane segmentation network
boosts the segmentation performance using the gated feature maps of both the
general visual cues and surface normals. LSD denotes line segment detector.
(b) The plane rectification module refines the coarse plane segmentations and
produces the vanishing-point-constrained quads (VP denotes vanishing point).
(c) The left-, right- and central-oriented quads (color-coded in red, green, and
blue, respectively) of building planes are the final results.

rectangles using a max-sum solver. The method is effective for
inferring quad planes in uncluttered environments. However,
the max-sum solver is prone to converge to a local optimum
when excessive (irrelevant) line segments from non-planar
objects are localized. These outliers can largely slow down
the graph construction, as the method needs to searches over
the entire space of all line segment pairs. To work around
the issue, we exploit the associations between line segments
and plane segmentations, by which we formulate a robust and
efficient line segment grouping strategy.

III. METHOD

Given a monocular RGB image I 2 R3⇥W⇥H with di-
mensions W ⇥H as input, we predict a set of quad planes
S = {S1, ...,Sn}. Each Si can be specified as a 5-tuple: Si =
{Li

1, Li
2, Li

3, Li
4, oi}, where Li

j denotes the jth line segment
in the image space that forms Si, and oi 2 O denotes the
orientation of Si in the camera’s perspective (see Sec. IV-A for
details). We employ a two-point perspective with a horizontal
vanishing point V Pi

h and a vertical vanishing point V Pi
v to

jointly determine the four lines in the quad (Fig. 2 (bottom)).
Note that V Pi

h or V Pi
v may locate at infinity.

A. Overview
Our method has the following twofold modules (see Fig. 2):
Plane Segmentation (Sec. III-B). We assume that a street-

view image consists of finite planes, i.e., piecewise constant
regions. Thus, we can employ an end-to-end CNN to generate
a piecewise plane segmentation of the image. The network
takes I as input, and predicts a segmentation mask M 2RW⇥H ,
where M(i) denotes the predicted orientation of the i-th pixel
of I. Specifically, we employ features of both general visual
cues and surface normals, and encapsulate multi-scale adaptive
features to boost the network training (Fig. 3).

Plane Rectification (Sec. III-C). We design this module to
rectify the coarse pixel-wise plane segmentation and produce
quad planes, for better supporting image overlay applica-
tions. We first employ a conventional line segment detector
(LSD) [16] to identify the line segments in I. Next, we utilize

loss 1/
softmax

loss 2/
softmax

loss 3/
softmax

loss 4/
softmax

loss 5/
softmax

loss 6/
softmax

conv

conv

conv

conv

conv

conv

conv

conv

conv

conv

+ res

us

+

+

+ res

+

res*

res*

*

* res

res

conv

conv

conv

conv

conv

us

us

us

us

us

us

us

us

us

concatconv

* Gated Conv Layer

Residual Block

Surface
Normal

General
Visual Cues

Fig. 3. Our network architecture encodes features of the surface normals
and general visual cues. The two-stream features are processed through a set
of residual blocks and gated convolutional layers. In the end, the multi-scale
feature maps are encapsulated into a deeply-supervised loss.

the spatial proximity between regions in the segmentation
mask M and the detected line segments to group the line
segments. Finally, we deduce V Ph and V Pv, and reconstruct
four intersecting line segments for each quad plane.

B. Plane Segmentation
We develop a new network architecture for segmenting a

street-view image into quad planes. Fig. 3 depicts the whole
network architecture. Overall, the network encodes two-stream
features of both the general visual cues and surface normals
through a series of gated convolutional layers. In the end, we
encapsulate the features from all the stages into a deeply-
supervised loss, so as to efficiently capture both the coarse
features at high-stage and the fine details at low-stage.

1) Two-Stream Feature Encoder: Prior studies have for-
mulated plane segmentation as a depth map prediction prob-
lem [45], [29], [30], [52]. However, depth map is usually noisy
and difficult to acquire for real street-view images. On the
other hand, other researches [21], [20], [18] have shown that
general visual cues (e.g., colors and textures) can be utilized
to recognize planes in a single image. Thus, we propose to
aggregate the features of surface normals and general visual
cues to improve the plane segmentation performance.

Here, we adopt the GeoNet [37], a state-of-the-art network
for surface normal prediction, to generate a surface normal
feature map. Also, we use the VGG16 network [47] to encode
general visual cues. Both feature extraction streams have five
stages of convolutional layers; see Fig. 3(a). At each stage,
the feature map size is halved, while the depth is doubled.

2) Gated Convolutional Layer: At the core of the network,
we design a series of gated convolutional (GC) layers to
facilitate the plane segmentation. Here, we denote the feature
map of the surface normals as Fn

t 2 RDt⇥Wt⇥Ht and the feature

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 4

(a) Line segments

(b) Segmentation mask

(c) Line segments group (d) Vanishing point (e) Quad plane

Fig. 4. Procedure of plane rectification. The module takes (a) line segments and (b) plane segmentation mask as inputs. (c) The line segments are partitioned
into groups depending on their spatial proximities with the segmentation masks. (d) For each group of line segments, a vertical vanishing point and a horizontal
vanishing point can be identified. Notice here the vertical vanishing point locates at infinity. (e) Four intersecting line segments, which form a quad plane as
the final result, can be identified using two-point perspective of the vanishing points.

map of the general visual cues as Fv
t 2 RDt⇥Wt⇥Ht at stage

t 2 {1,2,3,4,5}, where Dt , Wt , and Ht indicate the depth,
width, and height of the feature maps at stage t, respectively.

Overall, the gating mechanism is designed for the following
two purposes: First, since the surface normals and the general
visual cues are closely related, we need to aggregate their
features and generate a fused feature map F f

t , combining the
strengths of Fn

t and Fv
t . Second, since not all features in F f

t
are helpful for plane segmentation, we compute an attention
map from stage t to supervise the learning at stage t +1.

The fusion function can be summarized as follows.

F f
t = (Fn

t ⌦w1⇤1)� (Fv
t ⌦w1⇤1), (1)

where ⌦ and � stands for the convolution operator and
element-wise sum operator, respectively. w1⇤1 represents a 1⇤1
convolutional kernel. We employ a bilinear interpolation to
upsample Fn

t and Fv
t to RH⇥W , then we can combine the two

features by using an element-wise sum operator.
After fusion, we compute an attention map at 2RH⇥W using

at = s(Res(F f
t)), (2)

where Res(·) denotes a residual convolutional block and s(·)
denotes the sigmoid function. Intuitively, at can be seen as
an attention map that marks the important features of higher
weights. Next, we apply the attention map at at stage t to the
gated feature map at stage t +1 as

F̂ f
t+1 = ((at �F f

t+1)�F f
t+1)⌦wt+1, (3)

where � stands for an element-wise product operator, and wt+1
represents the channel-wise weighting kernel at stage t + 1.
F̂ f

t+1 is passed to Eqn. (2) to compute the attention map at+1
at stage t +1, then at+1 is passed on to the next stage t +2.
This procedure is repeated until the final stage.

3) Deeply-Supervised Loss: We encapsulate the multi-scale
convolutional features into discriminative representations, so
as to enhance the performance with fewer convolutional layers.
Here, we apply a 1⇤1 convolutional kernel to the gated feature
map F̂ f

t , yielding an activation map Xt for each stage t. In the
end, we further concatenate Xt for all stages t 2 {1,2,3,4,5},
and apply a convolution layer to create a fused activation map
Xf use. By this, all Xt and Xf use share the same dimensions

as the ground-truth plane instance Y . Thus, we formulate a
deeply-supervised loss function as

L= Ce(Xf use,Y)+
5

Â
t=1

Ce(Xt ,Y), (4)

where Ce(·) stands for a general softmax cross entropy func-
tion. We employ L to guide the network training process.

C. Plane Rectification
The gated network produces the coarse segmentation mask

M 2 RW⇥H . To better support image overlay generation, we
further rectify the pixel-wise segmentations into quad planes.
As depicted in Fig. 4, the module takes line segments (denoted
as L) detected by a line segment detector (LSD) [16], together
with the segmentation mask M as inputs. For each line l 2 L,
we first dilate line l with a k ⇥ k kernel (here, we use 5),
yielding a bag of pixels denoted as Pl . Then, we can measure
the correlation between l and orientation class oi 2 O by

corr(l,oi) =
Â|Pl |

j=1 1(M(Pl
j) = oi)

|Pl |
, (5)

where j runs over all pixels in Pl , and 1 is an indicator
function. Based on the correlation corr(l,oi), we can then
identify the following three scenarios of associating l and oi.

1) If corr(l,oi) � threup, we consider that l is inside a
plane of orientation oi. For instance, line segments of
windows, doors, and billboards are contained within the
quad plane of a building facade. These line segments
are useful for inferring the plane’s perspectives, but are
not helpful for identifying the plane’s boundaries.

2) If threup > corr(l,oi) � threlow, we consider that l lies
in the boundary of a coarse plane of orientation oi. Such
scenario typically happens to line segments of a building
roof or footprint. These line segments are informative for
both the plane’s perspectives and boundaries.

3) If corr(l,oi)< threlow, we consider that l is not associ-
ated with any plane of orientation oi. Such line segments
are ignored when rectifying planes of orientation oi.

where threup and threlow denote the upper and lower thresh-
olds, respectively, and are set to 0.7 and 0.3, respectively, in
our implementation. In this way, we can find a set of line

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 5

segments for each orientation oi. Further, we employ spatial
proximity to divide them into groups L1,...,Ln, corresponding
to plane instance S1,...,Sn. For each group of line segments
Li, we use a voting-based approach proposed by [46] to
estimate the vanishing points (Fig. 4(d)): (i) summarize the
orientation histogram of Li, (ii) identify the vertical (zenith)
and horizon lines, and (iii) find the vertical V Pi

v and horizontal
V Pi

h accordingly. Next, we connect V Pi
h with the top- and

bottom-most pixels of Si, and V Pi
v with the left- and right-

most pixels of Si. The operations yield four intersection line
segments Li

1, Li
2, Li

3, Li
4 (Fig. 4(e)). In case V Pi

h locates at
infinity, the two horizontal lines are in parallel; whilst if V Pi

v
locates at infinity, the two vertical lines are in parallel. By
then, we can rectify the coarse plane instance Si into a quad
plane with orientation oi, i.e., {Li

1, Li
2, Li

3, Li
4,o

i}.

IV. EXPERIMENTS AND RESULTS

A. Dataset and Implementation

1) Our Dataset: Our network focuses on plane segmenta-
tions of outdoor street views. To improve the robustness of
the trained network model, we consider the following three
requirements for compiling our dataset: R1) The street views
should be taken from various cities, such that the trained
network model can be more general; R2) The street views
should consist of both the street and side views, such that in
the future, we can simulate user behaviors of looking around
when using AR applications on the streets and pavements;
and R3) The detected quad-plane regions should be suitable
for placing virtual objects, i.e., quad-plane regions of small
areas and faraway from the camera should be omitted.

To meet requirement R1, we opt to select three major cities
in different parts of the world, i.e., New York, Hong Kong,
and City of London. Example street views are presented in
the first row of Fig. 5. From the figure, we can observe the
distinct landscapes of these cities, such as, the buildings in
New York and Hong Kong are in general taller than those in
London. For each city, we first randomly sample 500 positions
in its central area. Second, for each sample position, we extract
its geographic information (latitude lat & longitude lon) and
identify the street heading (h). Last, we crawl a view at each
sample position by passing lat, lon, h + q, with image size
480 (W)⇥360 (H) into the Google Street View API [1]. Here,
q is a random value in the range of [0o, 180o], where 0o and
180o are street views along the vehicle roadway, whilst 90o are
street views perpendicular to the roadway and looking towards
to the side (R2). Other parameters, including the field of view
and pitch, are set to their default values according to the API.
Specifically, the default value of pitch is set to 0, meaning that
the camera’s view direction is simply horizontal.

By this, we crawl a total of 1,500 (500⇥3) raw street-
view images for the three cities. Next, we manually label
the quad plane regions on each image using the LabelMe
toolbox [49]. Each plane region is labeled as an orientation
label of left (LT), right (RT), central (CT), and bottom (BT).
Thus, the set of orientation classes O in this work is specified
as O = {LT,RT,CT,BT}. We shall note that many pixels
are not assigned with any label. The second row in Fig. 5

TABLE I
QUANTITATIVE COMPARISONS WITH TWO SEMANTIC SEGMENTATION

NETWORKS (LDN, HK, AND NYC DENOTE THE CITY OF LONDON, HONG
KONG, AND NEW YORK CITY, RESPECTIVELY).

DeepLabV3+ PSPNet Ours

pixel
accuracy

LDN 0.819 0.779 0.822

HK 0.810 0.749 0.811

NYC 0.796 0.746 0.804

Overall 0.809 0.758 0.813

mean
accuracy

LDN 0.844 0.799 0.853

HK 0.757 0.736 0.820

NYC 0.751 0.721 0.795

Overall 0.787 0.757 0.828

mean
IoU

LDN 0.695 0.630 0.706

HK 0.677 0.589 0.696

NYC 0.639 0.558 0.663

Overall 0.673 0.596 0.691

presents the labeling results. Notice that some ground floors of
corridors or transparent glasses are not labeled, as we consider
they are not suitable for placing virtual objects.

2) Implementation: For each city, we randomly select 400
street views for network training, and take the remaining 100
for testing. Also, we employ a data augmentation method to
enlarge the training set: we scale up the training images to
resolution 150% & 200%, then randomly crop a 480⇥ 360
region on each scaled image. Hence, we generate in total 3,600
(400 ⇥ 3 cities ⇥ 3 scales) images as the training data. We
trained our network on a workstation with an NVidia Titan Xp
GPU card. The training process ran in total 100k iterations.
The momentum optimizer with a polynomial decay learning
rate starting at 1e-3 was employed to update the parameters.
We employed a small batch size of two together with group
normalization to improve the training accuracy [50].

B. Results of Plane Segmentation Network

Since the problem is modeled as a piecewise segmentation
task, we first compare the results with two recent neural
networks for semantic segmentation tasks, i.e., PSPNet [53]
and DeepLabV3+ [9]. Besides, we compare the results with
two latest neural networks specifically designed for plane
segmentations, i.e., PlaneRecover [52] and PlaneRCNN [29].

1) Comparisons with Semantic Segmentation Networks:
First, we trained the PSPNet [53] and DeepLabV3+ [9] models
on our training dataset using hyper-parameters proposed in
the original papers. For each network training, we checked
the model performance every two training epochs, and chose
the one with the best segmentation results as the final model.
Last, we tested the final models on the testing datasets. We
employed three widely-used metrics for pixel-wise segmen-
tation evaluation, i.e., pixel accuracy, mean accuracy, and
mean intersection over union (IoU). Let ni j be the number
of pixels of orientation i predicted to have orientation j, and
let ti = Â j ni j be the total number of pixels of orientation i.
The three metrics can be written as

• pixel accuracy: Â|O|
i nii / Â|O|

i ti;
• mean accuracy: (1/|O|)Â|O|

i nii/ti; and
• mean IoU: (1/|O|)Â|O|

i nii/(ti +Â|O|
j n ji �nii).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 6

Input

Ground
truth

DeevpLab
V3+
[9]

Ours

PSPNet
[53]

New York Hong Kong London

Fig. 5. Qualitative comparisons with general segmentation networks. From top to bottom: input images, ground truths, results of PSPNet [53], results of
DeepLabV3+ [9], and our results. From left to right: New York⇥2, Hong Kong⇥2, and City of London⇥2.

Table I shows the quantitative comparison results with
the two semantic segmentation networks. Our network out-
performs both PSPNet [53] and DeepLabV3+ [9] for all
the three metrics. This is probably because the semantic
segmentation CNNs employ only the general visual features
for segmentation, while our network utilizes a gated fusion
module to consider both the general visual cues and surface
normal features. Besides, we can notice that improvement of
our model over PSPNet [53] is much more than that over
DeepLabV3+ [9]. This is probably because DeepLabV3+ [9]
utilizes deeper layers than PSPNet [53] and ours.

Fig. 5 shows qualitative comparisons of predictions for
street views of New York, Hong Kong, and London. Over-
all, our network generates better segmentations than others.
Specifically, we can notice that our results contain fewer holes,
especially in comparison with DeepLabV3+ [9]. The small
holes may not affect much the quantitative metrics presented
in Table I. Yet, they can greatly affect the final results by the
plane rectification module; see Sec. IV-C for more discussions.

2) Comparisons with Plane Segmentation Networks: Both
PlaneRecover [52] and PlaneRCNN [29] rely on the depth
information for pixel-wise plane segmentation. Specifically,
PlaneRecover [52] is essentially a depth prediction network
that relies heavily on high-quality depth maps to supervise
the network training. Unfortunately, our dataset is not coupled
with such information. Hence, we experimented to predict the
depth directly from the input images. The results predicted by
struct2depth [7], a state-of-the-art neural network for depth
prediction are, however, incompetent. On the other hand,
PlaneRCNN [29] requires the intrinsic camera parameters

for estimating the plane offset, which is again absent in
our dataset. So, we opt to reuse the pre-trained models of
PlaneRecover [52] on SYNTHIA [39], PlaneRCNN [29] on
ScanNet [12], and ours on the training dataset. For a fair com-
parison, we randomly selected 50 images from three unseen
datasets of SYNTHIA [39] (except for PlaneRecover [52]),
KITTI [2], and CityScape [10]. The input sizes are set to
resolution 480⇥360 for consistency.

Plane segmentations by our model are coupled with ori-
entation information, while PlaneRecover [52] and PlaneR-
CNN [29] predict only distinct plane regions. The metrics
used for comparing semantic segmentation networks would be
incompatible hereof. Thus, we simplify plane segmentations
into only two classes of plane and non-plane. All pixels in
predicted plane regions are plane, whilst the others are non-
plane. We can then compare the segmentation accuracy using
the F-measure [23] that is commonly employed for evaluating
binary classification. The metric is expressed as

Fb =
(1+b2)Precision⇥Recall

b2Precision+Recall
, (6)

where b2 is set to 0.3, which follows the setting in [23].
Precision is the ratio of true-positive plane pixels over all
plane pixels, while recall is the ratio of true-positive plane
pixels over ground-truth plane pixels.

Table II shows the comparison results. Our network achieves
the best performance on both KITTI [2] and CityScape [10]
datasets, which are unseen to all three networks; PlaneRe-
cover [52] produces better results on SYNTHIA [39], as the
model was trained and tested on the same dataset.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 7

SYNTHIA [39] KITTI [2] CityScape [10]

Input

Ground
truth

PlaneRecover
[52]

PlaneRCNN
[29]

Ours

Fig. 6. Qualitative comparisons with prior plane recovery networks using unseen testing datasets from SYNTHIA [39]⇥2, KITTI [2]⇥2, and CityScape [10]⇥2
(from left to right). From top to bottom: input images, ground truths, results of PlaneRecover [52], results of PlaneRCNN [29], and results of ours.

TABLE II
QUANTITATIVE COMPARISONS WITH PLANE SEGMENTATION NETWORKS.
NOTE, FOR THE REASONS DISCUSSED IN SEC. IV-B2, WE HAVE TO USE

THE PRE-TRAINED MODELS OF PLANERECOVER [52] ON SYNTHIA [39],
PLANERCNN [29] ON SCANNET [12], AND OURS ON OUR OWN TRAINING

DATASET, AND TEST ON SYNTHIA [39], CITYSCAPE [10], AND
KITTI [2].

PlaneRecover PlaneRCNN Ours

Fb

SYNTHIA 0.8863 0.7543 0.8223
CityScape 0.8569 0.7460 0.8729

KITTI 0.7376 0.6696 0.7798

Fig. 6 presents some examples in the qualitative comparison
results. Note, PlaneRCNN [29] could wrongly recognize skies
in KITTI [2] as planes. This is probably because PlaneR-
CNN [29] is built upon Mask R-CNN [19], which means that
PlaneRCNN [29] relies more on local texture features for plane
recognition. PlaneRecover [52] produces better results, as it
considers more geometric information, e.g., relation between
depth and normal. However, the network performance drops
much in the KITTI [2] and CityScape [10] datasets, as depth
prediction is challenging in complex scenes of urban streets.
On the other hand, our method utilizes both geometric features
of surface normals and general visual cues, thus the predictions
outperform prior methods in complex urban street views.

C. Ablation Analysis
We evaluate the contribution of individual components in

our network using the pixel-wise segmentation metrics pre-
sented in Sec. IV-B1. All the models in this ablation study
were trained from scratch on the training dataset and evaluated
on the test dataset using the same set of hyper-parameters.
Specifically, we compare four ablated network models:

TABLE III
ABLATION ANALYSIS ON THE CONTRIBUTIONS OF INDIVIDUAL

COMPONENTS IN OUR PLANE SEGMENTATION NETWORK.

pixel accuracy mean accuracy mean IoU
Baseline 0.7970 0.7366 0.6466

+ Normal 0.7972 0.7789 0.6552
+ Normal + GC 0.8040 0.8026 0.6721
Ours (+ Normal

0.8130 0.8280 0.6910+ GC + DS)

• Baseline: The comparison is performed with respect to a
baseline network that is essentially a VGG-16 [47] model
built on the general visual cues;

• Baseline + Normal: We enrich the feature map by simply
concatenating two-stream features of general visual cues
and surface normals;

• Baseline + Normal + GC: Instead of simple concate-
nation, we combine the features of general visual cues
and surface normals using the gated convolutional (GC)
layers (Sec. III-B2); and

• Our Full Model (Baseline + Normal + GC + DS): Last,
we further encapsulate multi-scale convolutional features
using the deeply supervised loss (Sec. III-B3).

Table III presents the ablation study results, showing that
all components have positive contributions. Specifically, we
can notice that a simple concatenation of the general visual
cues and surface normals generate marginal improvements.
The improvements become larger, if we combine the two-
stream features using gated convolutional layers. Compared
to the baseline, our full model improves the overall pixel
accuracy by 2.00%, mean pixel accuracy by 12.41%, and
mean IoU by 6.87%. Fig. 7 shows some qualitative examples

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 8

Input images Baseline +Norm +Norm + GC Our full model

Fig. 7. Effects of individual component in the plane segmentation network.

TABLE IV
QUANTITATIVE COMPARISON OF PIXEL ACCURACY BEFORE AND AFTER
THE PLANE RECTIFICATION. AGAIN, LDN, HK, AND NYC DENOTE THE
CITY OF LONDON, HONG KONG, AND NEW YORK CITY, RESPECTIVELY.

Type Before Rectification After Rectification

LDN
Left 0.812 0.881

Right 0.791 0.850

Central 0.815 0.865

Overall 0.806 0.865

HK
Left 0.786 0.794

Right 0.735 0.792

Central 0.867 0.893

Overall 0.796 0.825

NYC
Left 0.833 0.857

Right 0.681 0.707

Central 0.753 0.724
Overall 0.756 0.767

of incrementally adding the four ablated components. Better
results of more complete planar regions with less missing parts
and holes can be generated, which is particularly important for
the plane rectification module.

D. Results of Plane Rectification Module
Table IV presents the quantitative comparison results before

(i.e., solely by the plane segmentation network) and after the
plane rectification (i.e., our final results) in terms of pixel
accuracy. In the camera views, we consider only left-, right-,
and central-oriented building planes, which are suitable for
placing virtual images or objects. From Table IV, we can see
that the accuracy generally improves after rectifying planes
in different orientations, indicating that our plane rectification
module is robust. Such improvements are contributed by the
filling of small holes and gaps that are hard to avoid for pixel-
wise plane segmentation networks, as shown by the qualitative
results in Fig. 8. Nevertheless, for New York, the accuracy is
very low for right and central planes, and it even drops after
rectification for central planes. After probing the results, we
suspect this is probably because many street views in New
York are taken at crossroads, making it difficult to classify the
plane orientations; see Fig. 8 (bottom) for examples.

E. Runtime Analysis
Next, we present a runtime analysis of our method per-

formed on a workstation with a single NVidia Titan Xp GPU
and eight-core 2.90GHz Intel Xeon E5 CPUs. We consider in-
put images in three different resolutions: 240⇥180, 360⇥270,
and 480⇥360. For the plane rectification module, we further
recorded the runtime of its sub-modules: line segment detec-
tion, line grouping, vanishing point detection, and rectification
(see Fig. 4). The plane segmentation module is implemented

LDN

HK

NYC

Ground truth Before rectification After rectification
Fig. 8. Qualitative examples of plane rectification effects.

TABLE V
RUNNING TIME OF MAIN MODULES AND THEIR SUB-MODULES FOR INPUT

IMAGES IN VARIOUS RESOLUTIONS.

Main Module Sub-Module 240⇥180 360⇥270 480⇥360
Plane - 31 ms 53 ms 92 msSegmentation

Plane
Rectification

Line Segment
Detection 62 ms 68 ms 110 ms

Line
Grouping 27 ms 58 ms 91 ms

Vanishing Point
Detection 26 ms 45 ms 49 ms

Rectification 16 ms 36 ms 68 ms
Overall - 162 ms 260 ms 410 ms

using TensorFlow and runs on the GPU, whereas the plane
rectification module is implemented in Python and runs on a
single-core CPU, in our current implementation.

Table V reports the method runtime. Overall, it takes around
410 ms for regular 480⇥360 input images, and after looking
into individual modules, we find that the plane rectification
module takes up over 75% of the overall time. In the future,
we will optimize it by harassing the multi-core CPUs, as the
computations in sub-modules can be processed in parallel.
Another promising direction is to reduce the image resolution,
as we can see the overall execution time can drop to 260 ms
for 360⇥270 input images and further to 162 ms for 240⇥180
input images. We can readily project quad planes detected on

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 9

SegmentationInput Image Rectification

glasses

overlapping

no vanishing points

oblique roof

Fig. 9. Our method can fail for glasses (top) and oblique roofs (bottom).

+

+

Input Image Plane Candidates Virtual Objects Image Overlaying

Fig. 10. The procedure of overlaying virtual contents on street-view images.
After identifying plane candidates from a street-view image, we align suitable
virtual objects on the planes based on their geometric properties.

low-resolution images to high-resolution images for the ap-
plication for faster estimation of quad planes. Experimentally,
we found that the overall pixel accuracy drops only by 12%
for 360⇥270 inputs and 14% for 240⇥180 inputs.

F. Failure Cases
Our method is prone to produce inaccurate results due to

glasses and oblique roofs in the street-view images, as demon-
strated in Fig. 9. First, glass material may show illusive reflec-
tions (Fig. 9 (top-left)) that interfere the plane segmentation
network. The predictions are in the cracked segments (Fig. 9
(top-middle)). In such case, the plane rectification module
deduces no vanishing points, and fails to recover a quad plane
(Fig. 9 (top-right)). Second, our current implementation omits
the oblique roofs, as they are regarded as unsuitable for placing
virtual objects, yet the roofs can occlude the building facades
behind (Fig. 9 (bottom-left)). The roofs are planar, and our
plane segmentation network may mis-predict their pixels as
plane regions (Fig. 9 (bottom-middle)). Hence, the prediction
results can further mislead the plane rectification module to
generate overlapping quad planes (Fig. 9 (bottom-right)).

V. APPLICABILITY

In this section, we demonstrate the applicability of the
recovered quad planes and their orientations in image overlay
applications, and discuss the possible usage in the estimated
poses. Figure 10 illustrates the procedure for overlaying virtual
contents on real-world street-view images. In detail, we first
identify the plane candidates through the proposed plane seg-
mentation network and rectification module. Next, we search
for suitable virtual objects in a pool, and overlay them on the
plane. In the top, a single building plane orthogonal to the

viewpoint is identified, which can be covered by a welcome
flag. In the bottom, two building planes along the road are
identified, which are suitable for put arrow icons to show the
direction and support the navigation.

A key requirement here is to align the selected image or
virtual object with the quad plane boundary and orientation.
As discussed in Sec. III, each plane Si is represented as
a 5-tuple: {Li

1, Li
2, Li

3, Li
4,o

i}. The line segments define four
intersections. On the other hand, the virtual objects utilized
in this work are 2D images of visual context, which can
also be specified by four vertices. We can then compute a
homography matrix that maps the vertices of a virtual object to
the intersections in the corresponding quad plane. Specifically
for virtual objects with directional information, we need to
consider the plane orientation as well. For instance, the arrows
are flipped on the right building plane in Fig. 10 (bottom), so
both arrows can point to the same direction. Also, notice that
the building planes are long narrow rectangles, so we further
cut them into parts to fit with the arrow marks.

The pool of virtual objects can be categorized into four
main groups based on their usage scenarios, i.e., entertainment,
navigation, tourism, and greenery. Figure 11 presents more ex-
amples of image overlay applications in these usage scenarios.
We choose street-view images from London, New York, and
Hong Kong, as listed on the left, middle, and right columns
of the figure, respectively. Further, we include a side view
and a road view for each city. The seamless blending effect
demonstrates the effectiveness of our detected quad planes.

VI. CONCLUSION AND FUTURE WORK

This paper presents a new neural network architecture to
segment a single street-view image into per-pixel orientations.
In the network, we adopted a new gating mechanism to
connect the general visual cues and surface normals, and for-
mulated a holistic loss function that encapsulates multi-scale
convolutional features and enables deeply-supervised network
training. Our network outperforms competing methods on a
newly-compiled benchmark with fine-grained plane annota-
tions of outdoor street views collected in three metropolis.

Also, we rectified the plane segmentations into vanishing-
point-constrained planes, and demonstrated the applicability
of overlaying virtual contents on the detected quad planes to
support various image overlay applications.

The applications demonstrate the potentials of our method
for extension to handle outdoor AR applications and seam-
lessly blend virtual and real objects, as a building component
in AR systems [3]. Nevertheless, well-designed AR systems
further require real-time performance and various 3D pose
estimation, which are not yet supported in our current im-
plementation. In the future, we plan to improve the runtime
performance, e.g., by designing lightweight networks and by
multiprocessing implementations.

Also, the twofold processes are realized as two separate
modules. Another direction is to encode the plane rectification
module in the plane segmentation network, and design an end-
to-end trainable network for the challenging yet rewarding
task. This adaption could also improve the overall runtime.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 10

Plane Candidates

LONDON NEW YORK HONG KONG

Entertainment

Navigation

Tourism

Greenery

Fig. 11. Demonstration of adding virtual contents to urban scene: images in the first row show the final results with quad plane regions; the rows below give
examples of possible image overlay applications with different virtual contents, including entertainment, navigation, tourism, and greenery.

Furthermore, our implementation detects line segments and
employs them to rectify building planes. As demonstrated
in [33], the quad planes recovered by our work can be
utilized in a series of applications, such as wide baseline
stereo matching and planar 3D reconstruction. Nevertheless,
empirical studies (e.g., [33], [28]) on recovering rectilinear
structures in single images often struggle with rectangle pars-
ing, which requires the processing of pairwise graph relations
among a large set of line segments. Our approach can help
to ease the problem by considering the spatial proximities
between line segments only with relevant plane segmentations
(see Sec. III-C). This has good potential for supporting high-
performance applications in practice.

ACKNOWLEDGMENT

We thank the anonymous reviewers for the helpful com-
ments that help us to improve the clarity in this paper, and
the street-view images from the Google Street View service.
This work is supported partially by the Research Grants
Council of the Hong Kong Special Administrative Region
(CUHK 14203416 & 14201717) and National Natural Science
Foundation of China (Grant No. 61802388).

REFERENCES

[1] Google’s street view static API. https://developers.google.com/maps/
documentation/streetview. Accessed: 2020-02-19. 5

[2] H. Alhaija, S. Mustikovela, L. Mescheder, A. Geiger, and C. Rother.
Augmented reality meets computer vision: Efficient data generation for
urban driving scenes. IJCV, 126(9):961–972, 2018. 2, 6, 7

[3] R. T. Azuma. A survey of augmented reality. Presence: Teleoper. Virtual
Environ., 6(4):355—-385, 1997. 2, 9

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A deep convo-
lutional encoder-decoder architecture for image segmentation. TPAMI,
39(12):2481–2495, 2017. 2

[5] G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes
in video: A high-definition ground truth database. Pattern Recognition
Letters, 30(2):88–97, 2009. 2

[6] J. B. Burns, A. R. Hanson, and E. M. Riseman. Extracting straight lines.
TPAMI, 8(4):425–455, 1986. 2

[7] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova. Depth prediction
without the sensors: Leveraging structure for unsupervised learning from
monocular videos. In AAAI, volume 33, pages 8001–8008, 2019. 6

[8] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs. TPAMI, 40(4):834–848,
2018. 2

[9] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation. In ECCV, pages 833–851, 2018. 5, 6

[10] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele. The Cityscapes dataset for
semantic urban scene understanding. In CVPR, pages 3213–3223, 2016.
2, 6, 7

[11] J. M. Coughlan and A. L. Yuille. Manhattan world: compass direction
from a single image by Bayesian inference. In ICCV, pages 941–947,
1999. 2

[12] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner. ScanNet: Richly-annotated 3D reconstructions of indoor
scenes. In CVPR, pages 2432–2443, 2017. 6, 7

[13] S. Dasgupta, K. Fang, K. Chen, and S. Savarese. DeLay: Robust spatial
layout estimation for cluttered indoor scenes. In CVPR, pages 616–624,
2016. 2

[14] A. Fond, M. Berger, and G. Simon. Facade proposals for urban
augmented reality. In ISMAR, pages 32–41, 2017. 1, 2

[15] R. Gal, L. Shapira, E. Ofek, and P. Kohli. FLARE: Fast layout for
augmented reality applications. In ISMAR, pages 207–212, 2014. 1, 2

[16] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall.

https://developers.google.com/maps/documentation/streetview
https://developers.google.com/maps/documentation/streetview

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX 2020 11

LSD: a Line Segment Detector. Image Processing On Line, 2:35–55,
2012. 2, 3, 4

[17] A. Gupta, A. A. Efros, and M. Hebert. Blocks world revisited: Image
understanding using qualitative geometry and mechanics. In ECCV,
pages 482–496, 2010. 2

[18] O. Haines and A. Calway. Recognising planes in a single image. TPAMI,
37(9):1849–1861, 2015. 1, 2, 3

[19] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In ICCV,
pages 2961–2969, 2017. 7

[20] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of
cluttered rooms. In ICCV, pages 1849–1856, 2009. 2, 3

[21] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context from a single
image. In ICCV, pages 654–661, 2005. 1, 2, 3

[22] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from
an image. IJCV, pages 151–172, 2007. 1, 2

[23] Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. H. S. Torr. Deeply
supervised salient object detection with short connections. TPAMI,
41(4):815–828, 2018. 6

[24] J. Karlekar, S. Z. Zhou, W. Lu, Z. C. Loh, Y. Nakayama, and D. Hii.
Positioning, tracking and mapping for outdoor augmentation. In ISMAR,
pages 175–184, 2010. 2

[25] Y.-C. Kung, Y.-L. Huang, and S.-Y. Chien. Efficient surface detection
for augmented reality on 3D point clouds. In CGI, pages 89–92, 2016.
1, 2

[26] T. Langlotz, T. Nguyen, D. Schmalstieg, and R. Grasset. Next-generation
augmented reality browsers: Rich, seamless, and adaptive. Proceedings
of the IEEE, 102(2):155–169, 2014. 2

[27] C.-Y. Lee, V. Badrinarayanan, T. Malisiewicz, and A. Rabinovich.
Roomnet: End-to-end room layout estimation. In ICCV, pages 4875–
4884, 2017. 2

[28] D. C. Lee, M. Hebert, and T. Kanade. Geometric reasoning for single
image structure recovery. In CVPR, pages 2136–2143, 2009. 2, 10

[29] C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz. PlaneRCNN: 3D
plane detection and reconstruction from a single image. In CVPR, 2019.
1, 2, 3, 5, 6, 7

[30] C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa. PlaneNet:
Piece-wise planar reconstruction from a single RGB image. In CVPR,
pages 2579–2588, 2018. 1, 2, 3

[31] Y. Liu, M. Cheng, X. Hu, J. Bian, L. Zhang, X. Bai, and J. Tang.
Richer convolutional features for edge detection. TPAMI, 41(8):1939–
1946, 2019. 2

[32] A. Mallya and S. Lazebnik. Learning informative edge maps for indoor
scene layout prediction. In ICCV, pages 936–944, 2015. 2

[33] B. Micusik, H. Wildenauer, and J. Kosecka. Detection and matching of
rectilinear structures. In CVPR, pages 1–7, 2008. 2, 10

[34] H. Noh, S. Hong, and B. Han. Learning deconvolution network for
semantic segmentation. In ICCV, pages 1520–1528, 2015. 2

[35] B. Nuernberger, E. Ofek, H. Benko, and A. D. Wilson. SnapToReality:
Aligning augmented reality to the real world. In CHI, pages 1233–1244,
2016. 1, 2

[36] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves,
and K. Kavukcuoglu. Conditional image generation with PixelCNN
decoders. In NIPS, pages 4797–4805, 2016. 2

[37] X. Qi, R. Liao, Z. Liu, R. Urtasun, and J. Jia. GeoNet: Geometric neural
network for joint depth and surface normal estimation. In CVPR, pages
283–291, 2018. 2, 3

[38] G. Reitmayr and T. W. Drummond. Going out: robust model-based
tracking for outdoor augmented reality. In ISMAR, pages 109–118, 2006.
2

[39] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez. The
SYNTHIA dataset: A large collection of synthetic images for semantic
segmentation of urban scenes. In CVPR, pages 3234–3243, 2016. 6, 7

[40] C. Rother. A new approach to vanishing point detection in architectural
environments. Image and Vision Computing, 20(9):647–655, 2002. 2

[41] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Learning 3D scene structure
from a single still image. TPAMI, 31(5):824–840, 2009. 1, 2

[42] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for
semantic segmentation. TPAMI, pages 640–651, 2017. 2

[43] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for
image categorization and segmentation. In CVPR, pages 1–8, 2008. 2

[44] J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost for
image understanding: Multi-class object recognition and segmentation
by jointly modeling texture, layout, and context. IJCV, 81(1):2–23,
2009. 2

[45] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation
and support inference from RGBD images. In ECCV, pages 746–760,
2012. 1, 2, 3

[46] G. Simon, A. Fond, and M.-O. Berger. A-contrario horizon-first
vanishing point detection using second-order grouping laws. In ECCV,
pages 323–338, 2018. 2, 5

[47] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015. 3, 7

[48] T. Takikawa, D. Acuna, V. Jampani, and S. Fidler. Gated-SCNN: Gated
shape CNNs for semantic segmentation. In ICCV, pages 5229–5238,
2019. 2

[49] K. Wada. LabelMe: Image Polygonal Annotation with Python. https:
//github.com/wkentaro/labelme, 2016. 5

[50] Y. Wu and K. He. Group normalization. In ECCV, pages 3–19, 2018.
5

[51] J. Xiao and Y. Furukawa. Reconstructing the world’s museums. IJCV,
110(3):243–258, 2014. 2

[52] F. Yang and Z. Zhou. Recovering 3D planes from a single image via
convolutional neural networks. In ECCV, pages 87–103, 2018. 1, 2, 3,
5, 6, 7

[53] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing
network. In CVPR, pages 6230–6239, 2017. 5, 6

[54] F. Zhou, H. B.-L. Duh, and M. Billinghurst. Trends in augmented reality
tracking, interaction and display: A review of ten years of ISMAR. In
ISMAR, pages 193–202, 2008. 1, 2

Zhiliang Zeng received the B.S. degree from the
Beijing Normal University, Zhuhai, and the M.Sc.
degree in Computer Science and Engineering from
the Chinese University of Hong Kong. He is cur-
rently a PhD student in Computer Science and
Engineering of Chinese University of Hong Kong.
His research interests include deep neural network
and image segmentation, using neural network for
indoor/outdoor scene analysis and application.

Mengyang Wu received the B.S. degree from Uni-
versity College London. He is currently a PhD
student in Computer Science and Engineering of
Chinese University of Hong Kong. His recent re-
search interests include deep learning for 3D vision,
scene understanding, and outdoor augmented reality.

Wei Zeng is currently an associate researcher at
Shenzhen Institutes of Advanced Technology, Chi-
nese Academy of Sciences. He received the PhD
degree in computer science from Nanyang Techno-
logical University in 2015. He served as co-chair of
ChinaVis’20 International Forum and PacificVis’19
Poster session, and program committee members in
various research conferences, including ChinaVis,
IVAPP, etc. His research interests include data visu-
alization, AR/VR, human–computer interaction, and
urban computing.

Chi-Wing Fu is currently an associate professor in
the Chinese University of Hong Kong. He served
as the co-chair of SIGGRAPH ASIA 2016’s Tech-
nical Brief and Poster program, associate editor of
IEEE Computer Graphics & Applications and Com-
puter Graphics Forum, panel member in SIGGRAPH
2019 Doctoral Consortium, and program committee
members in various research conferences, including
SIGGRAPH Asia Technical Brief, SIGGRAPH Asia
Emerging tech., IEEE visualization, CVPR, IEEE
VR, VRST, Pacific Graphics, GMP, etc. His recent

research interests include computation fabrication, point cloud processing, 3D
computer vision, user interaction, and data visualization.

https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme

