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a b s t r a c t

Human’s daily movements exhibit high regularity in a space–time context that typically forms circadian
rhythms. Understanding the rhythms for human daily movements is of high interest to a variety of
parties from urban planners, transportation analysts, to business strategists. In this paper, we present an
interactive visual analytics design for understanding and utilizing data collected from tracking human’s
movements. The resulting system identifies and visually presents frequent humanmovement rhythms to
support interactive exploration and analysis of the data over space and time. Case studies using real-world
human movement data, including massive urban public transportation data in Singapore and the MIT
reality mining dataset, and interviews with transportation researches were conducted to demonstrate
the effectiveness and usefulness of our system.

© 2017 Zhejiang University and Zhejiang University Press. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In transportation and geographical information systems (GIS),
human movements are usually presumed to engage in certain
activities, e.g., work, studying, and shopping. Hence, humans’ daily
movements can be described as ‘‘a scheduling of activities in time
and space’’ (Primerano et al., 2008), e.g., home → work → home
and home → school → tuition → home. The movements can be
further generalized as network motifs by abstracting the activity
information (Schneider et al., 2013), e.g., home → work → home
can be generalized as A → B → A, and home → school →

tuition → home as A → B → C → A.
In this work, we denote these motifs as movement rhythms,

each of which basically describes a sequence of locations visited in
time and space. A better grasp of human movement rhythms can
be highly beneficial for various applications, e.g., travel demand
management. For instance, by studying individuals’ activity and
travel schedule, transportation researchers derived an integrated
discrete choice model to analyze travel demands at different times
of a day (Bowman and Ben-Akiva, 2000).
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To explore the movement rhythms over space and time, an
interactive visual analytical tool that facilitates transportation ex-
perts’ exploration is preferred. Nonetheless, there are several chal-
lenges to overcome. First, a direct plot of all the human daily
movements, such as to display the changes of geospatial positions
in time in 3D space (Kapler and Wright, 2004), can easily lead to
visual clutter. Second, the movements of human daily movements
can exhibit many different rhythms, e.g., A → B → A and A →

B → C → A, etc. Appropriate data modeling should be developed
to efficiently classify these movement rhythms. And lastly, human
movements involve many different types of activities, which are
happening at different locations in space, and take different times
to finish the activities and to travel between locations. The visu-
alization should present the spatial and temporal perspectives of
information in an intuitive way.

In our previous work (Zeng et al., 2016b), we presented a visual
analytics design for studying movement rhythms from massive
public transportation data. Thiswork presents an extended version
by applying the approach on another human dailymovement data,
i.e., the MIT reality mining dataset (Eagle and Pentland, 2006). We
first describe an efficient movement modeling method to identify
movement rhythmsbased on themovement’s spatial and temporal
characteristics (Section 4.3). All movement rhythms are organized
into a hierarchical tree structure with a new tree construction
algorithm (Section 4.4) devised from the association rule concept.
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We show that our algorithm can preserve more details about
movement rhythms than typical methods, and can be generalized
to aggregate event sequence data in a level-of-detail style. We
then present the Rhythm Sequence View to depict the temporal per-
spective of movement rhythms, together with the Rhythm Density
View plotting movement origin and destination distributions in
spatial dimension, and the Rhythm Statistic View over-viewing the
statistics of frequentmovement rhythms (Section 5). In the end,we
apply our approach to the study of real-world human daily move-
ment data, i.e., massive urban public transportation data in Sin-
gapore and the MIT reality mining dataset (Section 6). Interviews
with transportation researches are conducted to demonstrate the
effectiveness and usefulness of our system (Section 7).

The major contributions of this work are:

• a new event aggregation algorithm, which can preserve
more details of event sequence data than typical methods,
and can be generalized to achieve a level-of-detail visual-
ization;

• a visual analysis approach integrating human interactions
and data processing to explore human movement rhythms;

• case studies on real-world human daily movements show-
ing interesting movement rhythms, especially the identifi-
cation of 12 frequent movement rhythms extracted from
massive public transportation data in Singapore .

2. Related work

We review related researches in three topics: time geography,
movement data and event sequence visualization.

2.1. Time geography

Humanmovement over space and time can be conceptually for-
mulated by time geography (Hägerstrand, 1970). Time geography
employs a space–time cube to present the movement trajectory
in 3D: the 2D horizontal plane for spatial and vertical axis for
temporal.

Many studies have extended time geography framework to
portray and analyze humanmovements. For example, someworks
developed new visual representations, such as GeoTime (Kapler
and Wright, 2004) and stacking-based trajectory wall (Tominski
et al., 2012). Others employed the framework to explore human
movement patterns, e.g., individual’s activity dairy data (Chen et
al., 2011) and student travel behavior (Kamruzzaman et al., 2011).

Theseworks show that space–time cube can be a prominent so-
lution from a visualization perspective. However, directly plotting
the movement data in 3D can easily lead to visual clutter problem
when the dataset size increases. This limits the applicability of the
approach for our problem, where human daily movements in Sin-
gapore involve over 30 millions of trips. Therefore, we employ the
pattern extraction and summarization approach (Andrienko et al.,
2008) by identifying movement rhythm patterns and visualizing
the aggregated characteristics.

2.2. Movement data visualization

One key challenge for movement data visualization is to effec-
tively present the spatio-temporal movement patterns posted by
the large data size and to support the complex analytical tasks
demanded by the domain users, see Andrienko and Andrienko
(2012) for a systematic review. Below,we only discuss a few repre-
sentative works and summarize them in the following categories.

Visual display: We can design novel visual structures to re-
veal movement patterns in the data, e.g., waypoints-constrained

OD view (Zeng et al., 2016a). Then, the visualizations can or-
ganize visual structures to build up a user interface, which can
present movements in 3D space, e.g., stacking-based trajectory
wall (Tominski et al., 2012), or linked views with multiple per-
spectives, e.g., TripVista (Guo et al., 2011), or an integrated view,
e.g., occlusion-free temporal maps (Sun et al., 2014).

Interactive techniques allowusers to filter and explore themove-
ment data based on user demands. FromDaDy (Hurter et al., 2009)
supports to brush trajectories, and pick and drop the brushed
information into juxtaposed views. TrajectoryLenses (Krüger et
al., 2013) allows users to filter trajectories based on their origins,
destinations or waypoints. A more elaborated interaction tool can
be found in Scheepens et al. (2016), which allows for selection of
area, directions, additional attributes, etc.

Computation processing leverages machine analysis capability
to help explore the movement data. Various works have been
carried out in this direction, e.g., clustering trajectories (Andrienko
et al., 2010), and inferring mobility patterns (Zeng et al., 2014).

In this work, we first employ an efficient modeling method to
identify movement rhythms, and map the spatial and temporal
perspectives of information into linked views with a set of interac-
tive query methods. Thus, our system combines the advantages of
powerful computation analysis with human’s domain knowledge
and cognitive abilities.

2.3. Event sequence visualization

Since human daily movements are from locations to locations,
movement rhythms can be considered as a sequence of events.
In this sense, our work is considered to be closely related with
event sequence visualization. Most of event sequence visualiza-
tions employ graph representation techniques, where each event
is represented as a node and each transition between events is
represented as an edge. In our case, locations of humanmovements
can be represented as nodes, and movements between locations
can be represented as edges. Then, movement rhythms can be
considered as a set of event sequences, which can be generally
visualized in two ways:

First, we can apply algorithms to map event sequences onto 2D
plane using dimension reduction algorithms (Wei et al., 2012), or
to mine frequent event sequences (Vrotsou et al., 2009). These ap-
proaches are effective for high-dimensional event sequence data.
Nevertheless, since most daily movements consist of less than
5 journeys (see Fig. 1 for Singapore public transportation data),
movement rhythms in this study do not exhibit so many dimen-
sions.

Considering this, we employ the second approach, i.e., to aggre-
gate event sequences to construct a hierarchical tree structure, and
then visualize the tree structure. This approach can be identified in
many fields, including patient medical history (Wongsuphasawat
et al., 2011), eye movement traces (Tsang et al., 2010), and public
transportation mobility (Zeng et al., 2014). Many techniques have
also beendeveloped to simplify tree structure (Monroe et al., 2013)
and sort layout to improve legibility (Wongsuphasawat and Gotz,
2012). More recently, a visual interface applying data anonymiza-
tion operations on Sankey diagram-like visualization has been
designed to preserve privacy in event sequence data (Chou et al.,
2016).

This approach firstly constructs a representative tree structure
that can effectively organize all event sequences. A typical tree
construction algorithm has been described in LifeFlow (Wong-
suphasawat et al., 2011), where the algorithm starts from the root
node and iteratively groups the events into the same category until
the leaves. However, we find that this methodmay over-aggregate
event sequences, and thus lead to wrong and missing information
(Section 5.5). To overcome this issue, we devise a new rhythm tree
construction mechanism (Section 4.4).
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Fig. 1. Percentages of number of journeys in the Singapore public transportation
data on weekdays and weekends, respectively.

3. Overview

This section firstly introduces relevant terminologies in trans-
portation, and then describes the input movement data. After that,
we summarize a set of analytical tasks, followed by the system
overview.

3.1. Terminologies

Here, we explain some basic concepts employed in this work to
facilitate the discussion:

• A journey refers to the movement taken by a person from
her/his origin to destination.

• A stay refers to the stay of a person at a location between two
consecutive journeys. The person can do certain activities
during the stay, e.g., working or shopping.

• A itinerary is a sequence of dailymovements and activities of
a person, which can consist of multiple journeys and stays.

For instance, considering an employee’s home → work →

homemovements, they comprise the itinerary of the employee. The
movements of home → work, andwork → home are two journeys.
The activities performed at the working place is considered as a
stay. Notice we also consider the periods before home → work and
after work → home as stays, where the stay after work → home is
specifically denoted as itinerary end.

3.2. Data description

Our interactive visual analytics system is applied to the follow-
ing two movement datasets:

Singapore Public Transportation Data: The data is a one-week
passenger movement data over the public transportation in Sin-
gapore, including both subway and bus rides. When a passenger
makes a ride, the system will record various information, includ-
ing anonymous card ID, journey ID, tap-in/-out times, tap-in/-
out stops, etc. If two or more rides are happening within 30 min
consecutively, the system will assign the same journey ID to these
rides. By ordering these rides based on their tap-in times, we can
rebuild a journey. By referring to the card ID, we can group these
journeys and order them based on their journey starting times,
and thus the interval between two consecutive journeys forms a
stay. These journeys and stays further make up an itinerary of the
passenger.

In total, there are over 30 million rides made by ∼1.8 million
individual passengers over the week, with each passenger takes
∼2.3 journeys on average every day. Besides, we have geographic
information of ∼4.8k subway and bus stops, and thus we can
retrieve the movement origins and destinations by referring to the
recorded tap-in/-out stops.

The MIT Reality Mining Data: The project was conducted on
94 subjects at MIT Media Laboratory from September 2004 to
June 2005. Each subject was given a cell phone for tracking their
communication, proximity, location and other information. The
location information is indicated through sequence number of
cellular towers, which has 100–200 m accuracy in urban areas. In
this work, we select the locations and times of individual subject,
and organize them into itineraries. If locations in two consecutive
time stamps are the same (the same cellular tower id),we put them
together and hence form a stay event. A transition between two
consecutive stays is considered as a journey. In total, we extract
∼11 thousand itineraries from over three million records in the
dataset.

3.3. Analytical tasks

Fig. 1 presents detailed percentages of the number of jour-
neys on weekdays and weekends extracted from the Singapore
public transportation data. From the figure, we can see that most
itineraries consist of less than 5 journeys, and there are not much
differences between weekdays and weekends. For instance, on
both weekdays and weekends, there are ∼50% passengers making
two journeys. Nonetheless, transportation researchers would like
to explore more details and find differences between these move-
ments.

In discussions with a group of transportation researchers, we
find some frequent questions, e.g., ‘‘what movement rhythms can
be frequently found?’’, ‘‘what is the percentage of a specific move-
ment rhythm, e.g., A → B → A?’’, ‘‘what differences exist
between weekday and weekend?’’, etc. Based on these questions,
we identified a family of analytical tasks:

T1 Frequentmovement rhythms: The expertswould like to grasp
an overview of frequent movement rhythms: what are the
frequent movement rhythms? what is the percentage of
each movement rhythm?

T2 Spatial movement distribution:Movement distribution in the
spatial dimension is always of interestwhen studyingmove-
ment data. In particular, the experts would like to know
the origins and destinations of journeys, i.e., where are the
journeys originated from & ended at? How many journeys
are originated from or ended at a specific location?

T3 Temporal movement flows: The experts would also like to
explore the movement flows in the temporal dimension:
How long do people stay at a location? How much time is
needed to travel between two locations?

In addition, it would be necessary that our system allows for
interactive filtering of movements over space and time, and then
information for T1, T2 & T3 will be updated.

3.4. System pipeline

Fig. 2 shows the pipeline of our system. The system starts with
data modeling phase (Section 4). To enable interactive filtering
of movements over space and time, we firstly index all journeys
in spatial and temporal dimensions. We also identify movement
rhythms for all itineraries in this phase. These two steps are per-
formed offline when we load the movement data.

In the second phase, users can perform interactive visual ex-
ploration of movement rhythms (Section 5). Here, our interface
presents three coordinated views: Rhythm Statistics View presents
statistic overview of frequent movement rhythms (T1), Rhythm
Density View plots the movement origin and destination distribu-
tion in spatial dimension (T2), and Rhythm Sequence View presents
the movements traveling times and stay durations in temporal
dimension (T3). The views complement each other and work to-
gether to support various analytical tasks. A series of spatial and
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Fig. 2. System pipeline: In the data modeling phase, we perform spatial and temporal indexing, movement rhythms identification, and rhythm tree construction. In the
visual exploration phase, three coordinated views are linked to support the analytical tasks.

temporal query techniques have also been integrated. Details of
this phase can be found in Section 5.

4. Data model

In order to support the identified analytical tasks, we perform
the following steps to model the movement data. In Step 1 Spatial
and Temporal Indexing, we build a hashing-based indexing method
to support interactive filtering of the itineraries over space and
time, specifically for Singapore public transportation data. After
that, we map the filtered itineraries to certain movement rhythms
in Step 2 Movement Rhythm Identification. Lastly, in Step 3 Rhythm
Tree Construction, we organize all identified movement rhythms
into a hierarchical tree structure for visualization.

4.1. Spatial and temporal indexing

The Singapore public transportation data contains too many
passenger movements (over 30 million rides in one week). To sup-
port interactive spatial and temporal queries against user-defined
time period △t and area of interest AOI , we use a hashing-based
indexing method rather than scanning through every itinerary in
the massive movement data.

First, to filter relevant itineraries within △t , we partition a
day from 06:00 to 24:00 (over 99% journeys happen during this
period) into 15-minutes time bins. Here, we choose 15-minutes
as the minimal time scale, driven by both a common practice in
transportation and a recent study (Zhong et al., 2016), which
shows that movement regularity dramatically decreases when the
temporal scale is less than 15min. Hence, we have 72 time bins for
each day, and 504 (72×7) time bins in total for a week.

Second, to filter relevant trajectories starting from or ending
at AOI , we create two hash tables with journey IDs as keys, and
starting and ending times as values at each stop for each time bin.
Notice here we index journeys instead of itineraries, as transporta-
tion researchers would like to explore movement origins and des-
tinations at each sequence of movement rhythms; see Section 6.2
for an example. In the end, we have ∼ 4.8k × 504 × 2 hash tables
in total. In the query time, we firstly search for time bins within
△t , and stops within AOI , and then filter journeys based on user-
defined interactions.

4.2. Movement model

Wecanmodel an itinerary I as a sequence of n ∈ N stays or n−1
journeys:

I := S1 → S2 → ... → Sn, or (1a)
I := J1 → J2 → ... → Jn−1, (1b)

where Ji := Si → Si+1. From the movement data, we can associate
each Ji with two locations and two timestamps:

Ji := (loi , toi ) → (ldi , tdi ) (2)

where (loi , toi ) represents the journey’s origin location and starting
time, and (ldi , tdi ) represents destination location and ending time.

Fig. 3. Three caseswhenwewant to assign a region label to a new stop li+1: separate,
split and merge.

In the Singapore public transportation data, loi & ldi belong to the
input subway/bus stops in the public transportation system, while
in the MIT reality mining data, loi & ldi refer to the cell tower id. t
follows the rule of:

toi < tdi < toi+1 , ∀i ∈ N : 1 ≤ i < n − 1.

Hence a stay Si can be modeled as:

Si := (ldi−1 , tdi−1 ) → (loi , toi ), ∀i ∈ N : 1 < i < n (3)

and specifically for i = 1 and i = n:

S1 := (lo1 , 06 : 00) → (lo1 , to1 ) and
Sn := (ldn−1 , tdn−1 ) → (ldn−1 , 24 : 00).

4.3. Movement rhythm identification

Region Mapping: Notice that a stay should be happening in a
region. In the Singapore public transportation data, the locations
refer to public transportation stops. It is typical that ldi−1 and loi
may not be the same stop, but rather located close to each other.
Considering this, we map the bus stops into regions first for the
Singapore public transportation data.

Si := (Ri, tdi−1 → toi ), ∀i ∈ N : 1 ≤ i ≤ n. (4)

Here,we consider an areawithin a 10-minuteswalking distance
at average 5 km/h speed around the destination stop ldi−1 as the
region Ri. This distance is selected since the max ideal stop spacing
is 800m (approx. 10min× 5 km/h) in an urban environment (De-
partment of Transport and Main Roads, Queensland, 2016).

For each itinerary, when we already have R := {R1, R2, . . . , Ri}

regions labeled, and to find the region for a new location li+1, we
may encounter the following conditions as illustrated in Fig. 3.
Here, we firstly find the 10-min. at 5 km/h walkable region around
li+1, and mark it as Rtemp (green circle).

• Separate: If li+1 is located outside Ri and Rtemp does not over-
lap with Ri, we label Rtemp as Ri+1, mark it as the surrounding
area of li+1, and add Ri+1 into R.

• Split: If li+1 is located outside Ri but Rtemp overlaps with Ri,
we firstly split Ri and Rtemp using Voronoi tessellation (the
dashed line), and then label Rtemp as the surrounding region
Ri+1 of li+1, and lastly add Ri+1 into R.

• Merge: If li+1 is located inside Ri, we firstly update Ri by
merging it with Rtemp, and then we label Ri as the surround-
ing region of li+1.
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Fig. 4. Illustrations of movement rhythms of a itinerary consisting of two journeys:
(a) A → B → A, (b) A → B → C → A.

(a) Lifeflow. (b) Our Approach.

Fig. 5. Comparing the tree construction differences between (a) LifeFlowand (b) our
approach: our approach employs more constraints on the aggregation, and hence
can preserve more details.

We do the above checking against all regions R ∈ R. After we
do the labeling for all stops, we can substitute Eq. (4) into Eq. (1a),
and we can model an itinerary as:

I := (R1, 06 : 00 → to1 ) → (R2, td1 → to2 ) → ...

→ (Rn, tdn−1 → 24 : 00), ∀i ∈ N : 1 ≤ i ≤ n

If two consecutive stays Si := (Ri, tdi−1 → toi ), Si+1 := (Ri, tdi →

toi+1 ) have the same region label, we will merge them together as
one stay Smerge := (Ri, tdi−1 → toi+1 ).

Rhythm Identification: After this, we can replace Ri with a char-
acter A− 1+ i, and then the itinerary can be denoted as A → B →

... → X . The final sequence of characters will be considered as
the movement rhythm of the itinerary. For instance, the itinerary
illustrated in Fig. 4(a) will be identified as A → B → A movement
rhythm.

Notice that in the Singapore public transportation data, the
origin stop of a successive journey loi+1 may not be in the same
region Ri of the destination stop ldi of previous journey. In this
case, we simulate an additional journey J ′ from ld1 to lo2 . Traveling
time t ′travel of J ′ is interpolated as the average traveling time of
movements from green to yellow region, and stay durations in
the green and yellow regions are interpolated by average stay
durations of movements at the two regions versus to2 − td1 − t ′travel.
In this way, the itinerary illustrated in Fig. 4(b) will be identified as
A → B → C → A.

This step is performed when our system loads the movement
data, then our system assigns a string label of the identified move-
ment rhythm to each itinerary.

4.4. Rhythm tree construction

Fig. 5 (top) illustrates four itineraries, where the nodes repre-
sent people stay at locations, and arrows represent people travel
from one location to another. To simplify the discussion, we as-
sume all itineraries begin at the same time, and stay at locations

for the same time period, while traveling times from locations to
locations are different. For instance, traveling times from A to B in
the first two sequences are shorter in the top two itineraries than
those in the bottom two itineraries.

Fig. 5(a) presents the tree construction algorithm described in
LifeFlow (Wongsuphasawat et al., 2011). Here, since all move-
ments start from A, and go to B, LifeFlow will group all itineraries
at the first two sequences. Then at the third sequence, the top two
itineraries going to A will be grouped together, while the bottom
two going to C form another group. Here, since all fourmovements
are grouped together at the first two sequences, the visualization
will present averaged traveling times from A to B for all these four
movements. Nonetheless, such aggregation misses traveling time
difference from A to B between the top two itineraries and bottom
two itineraries.

This situation is quite common in reality. For instance, let us
assume two employee movements, EM1: home → work → home
and EM2: home → work → lunch → work → home. We can
imagine that stay duration at work location of EM1 is ∼8 h, while
EM2 stays at work location for ∼3 h before lunch. In this sense, we
should not group the second sequence work in EM1 and EM2.

To address this problem, we employ the association rule con-
cept from the Apriori algorithm (Agrawal and Srikant, 1994), and
devise a rhythm tree construction algorithm that works as follows:

1. Add a $ symbol at the end of each movement rhythm, e.g.,
the top two movement rhythms in Fig. 5 (top) become I1 :=

A → B → A → $ , and I2 := A → B → A → C → $ .
2. Associate an event with its successive event to form an

association rule till we come to the $ symbol, e.g., the top
two rhythms become I1 := (A, B) → (B, A) → (A, $) → $ ,
and I2 := (A, B) → (B, A) → (A, C) → (C, $) → $ .

3. Aggregate two event sequences iteratively till we come to a
difference or the end of one sequence, e.g., we can group the
first two sequences of I1 and I2, and at the third sequence, I1
is (A, $) while I2 is (A, C). Hence, the aggregation between
I1 and I2 stops at the third sequence.

We do this aggregation for all movement rhythms. In the end,
we can construct a hierarchical tree structure that organizes all
itineraries. In this way, our algorithm is able to form two differ-
ent groups for itineraries presented in Fig. 5 (top) at the second
sequence, as illustrated in Fig. 5(b), and hence our visualization is
able to present the traveling time differences.

5. Visualization design

In this section,we first discuss the principles of our visualization
design. Then, we describe three visualization modules together
with interactions implemented in our system.

5.1. Design rationale

After modeling the movement rhythms, we further derive a
set of design rationales for the visualization design to meet the
analytical tasks T1 to T3.

• Overview+Details: Our system follows the ‘‘Overview first,
zoom and filter, then details on demand ’’mantra (Shnei-
derman, 1996). First, an overview should be provided to give
analysts a broad overview ofmovement rhythms over space
and time. Then analysts can further explore the detailed
information using filtering and selection.

• Interactive Exploration: Since movement rhythms are spa-
tially and temporally dependent, our system should provide
intuitive interactions to support analysts’ demands on ex-
ploring movement rhythms in a specific time period and
area of interest.
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Fig. 6. Rhythm Statistic View presents percentages of 12 most frequent movement
rhythms based on the common color scheme used by all the views (a). Glyphs are
employed to indicate the corresponding movement patterns: (b) A → B → C → A
and (c) A → B → C → D → E.

• Multi-perspective Analysis: To accomplish the analytical
tasks T1–T3, analysts need to probe the data from multiple
perspectives. Our system should provide multiple views,
and establish links between them to present the information
in different dimensions, such that to enable an efficient
multi-perspective analysis.

To support Multi-perspective Analysis, we design three linked
views: Rhythm Statistic View, Density View and Sequence View. They
are arranged in a main and two sub windows; see Fig. 9. Below, we
describe the details of each view.

5.2. Rhythm statistic view

For T1, we aim to overview frequent movement rhythms. Dur-
ing the offline processing, our system summarizes all movement
rhythms over one week from the Singapore public transportation
data, and sorts these rhythms in descending order. In the end, we
identify 12 most frequent movement rhythms that sum up to 95%
of all itineraries.

In the interactive visual exploration stage, our system presents
Rhythm Statistic View as illustrated in Fig. 6. The view lists these
12 rhythms as rhythm 0 - 11, and sums up the remaining in
Others category as rhythm 12. For each rhythm, the view presents
a unique glyph on the top, with nodes and directed links to il-
lustrate the movement pattern. The nodes are colored based on a
common color scheme used by all views in our system (Fig. 6(a)).
Specifically, red color is reserved for stays at A, blue for B, green for
C , purple for D, golden for E, yellow for F and afterwards. Hence,
the glyphs in Fig. 6(b) & (c) represent A → B → C → A and
A → B → C → D → E rhythms, respectively. Then, after
users filter the itineraries, our system recomputes the percentages
of each movement rhythm, and depicts the statistics as bar charts.

Basic Interactions: In Fig. 6, all glyphs’ backgrounds are gray,
meaning that all these rhythms are selected. Analysts can also
specify only a few specific rhythms for comparison, and the des-
elected glyphs’ backgrounds will be marked as white.

5.3. Rhythm density view

For T2, we aim to present spatial distribution of journey origins
and destinations. To accomplish this, our system presents Rhythm
Density View as shown in Fig. 7. The view is basically a density map
overlaid on top of a base map with road network shown as con-
nected lines. Specifically, subway lines are colored according to the
subway color scheme, e.g., green from east–west line and purple
for north-west line in Singapore. The density map indicates the

Fig. 7. Rhythm Density View presents the journey origins/destinations in the spatial
dimension.

number of journey origins/destinations in a given period, which
is generated with kernel density estimation (KDE) (Silverman,
1986) that has been successfully applied in presenting movement
distributions, e.g., Scheepens et al. (2011) and Slingsby and van
Loon (2016). The movement distributions along journeys are not
within the scope of this work, as they do not affect movement
rhythm analysis.

In detail, after analysts specify △t and AOI , we are able to filter
a set of n ∈ N stops S := {s1, s2, . . . , sn} within AOI , where
si := (sxi , syi ) ∈ N × N. Each si is also associated with a number
vi ∈ N indicating the number of journeys starting from or ending
at the stop during △t . Then we compute the density at location
l := (lx, ly) as

f (l) =
1
n

n∑
i=1

K (
|l − si|

h
) × vi, (5)

where |l−si| represents the Euclidean distance between l and si, i.e.,√
(sxi − lx)2 + (syi − ly)2. h is bandwidth fixed at 10-min. walking

distance is at average 5 km/h speed. And K is a normal distribution
kernel:

K (x) =
1

√
2π

e−x2/2. (6)

After computing all the densities, we can get a maximum den-
sity value vmax, and then divide vmax into 5 exponentially divided
ranges [0, v1/5

max), [v
1/5
max, v

2/5
max), [v

2/5
max, v

3/5
max), [v

3/5
max, v

4/5
max), [v

4/5
max, vmax].

Each range has a corresponding gray-scale color; see Fig. 7(b).
Lastly, the density field is mapped into the five gray-scale colors
based on their values, and thus makes up a density map for ren-
dering.

Basic Interactions: Analysts can interactively select a stay se-
quence, and origin/destination, by clicking on a corresponding
stay & ‘‘origin/destination’’ icons shown in Fig. 7(a). A combina-
tion of the stay sequence and origin/destination filters journeys’
origins/destinations to visualize. For instance, for A → B → A
movement rhythm, it consists ofA → B and B → A journeys:when
analysts specify ‘‘A’’ and ‘‘origin’’, our system will count the origin
of A → B journey; when analysts specify ‘‘A’’ and ‘‘destination’’,
our system will count the destination of B → A journey.

5.4. Rhythm sequence view

For T3, we aim to present the temporal perspective of informa-
tion about themovement rhythms.Wedesign theRhythmSequence
View as shown in Fig. 8(a) with the following visual elements:

• Timeline: To effectively present the traveling times and stay
durations, a timeline on the bottom of the view is displayed
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Fig. 8. Visual comparison between Rhythm Sequence View constructed through (a) rhythm tree construction and (b) LifeFlow tree construction mechanisms: our algorithm
is able to present more meaningful results. For instance, our algorithm (a) reveals that people of A → B → A rhythms go back to A at ∼18:30, while LifeFlow (b) wrongly
indicates that they go back at ∼17:00.

to show the time period from 06:00 to 24:00. We draw a
timeline for every 15 min, and a dashed line from bottom
to top for every 3 h, to facilitate the visual examination and
comparison of times.

• Tree Structure: The tree is represented as a flow map, where
the nodes representing stays or itinerary ends at locations,
and links representing journeys from locations to locations.
Each stay node is depicted as a rectangle with its height pro-
portional to itinerary volume and length proportional to the
average time that the movements stay at the location. For
itinerary ending nodes, we represent them as semi circles.
Since journey traveling time is also a period of time as the
stay duration, we also depict the links as rectangles at the
stay nodes to keep consistence.

• Node Layout and Color: The root node is placed on the left
end, with its height the same as that of the display view, and
ranges from left side (i.e., 06:00) to average starting time. For
its child nodes, we sort them in descending order based on
their itinerary volumes, and arrange them from bottom to
top. We repeat this process for all child nodes until reaching
itinerary ending nodes.We then color all nodes according to
the common color scheme as shown on the top of the figure.
We also reserve a unique gray color for the links.

• Interactive Time Slider: We also provide an interactive time
slider as a pink rectangle overlaid on the view. Analysts
can change the querying time interval [tmin, tmax] with the
following options: (1) dragging the start/finish slider left
and right to change tmin/tmax, respectively; (2) dragging the
whole slider left and right to change both tmin & tmax; and (3)
double click on the slider to specify tmin to 06:00 and tmax to
24:00.

5.5. Design alternative

A design alternative in this work is the generation of Rhythm
Sequence View. As discussed in Section 4.4, we can employ the
LifeFlow tree construction mechanism to generate a rhythm tree
structure that organizes all the movement rhythms. Fig. 8(b)
presents an example visualization generated using this approach,
with the same spatio-temporal query parameters as in Fig. 8(a). By
comparing them, we can easily observe that this alternative design
can lead to inaccurate information.

First, by averaging stay durations at B in A → B → A... and
A → B → C ... rhythms, Fig. 8(b) shows that both rhythms stay at
B from ∼09:00 to ∼16:30. Nevertheless, such aggregation misses
the differences between the two groups of rhythms, as people of

Fig. 9. Our visual interface arranges the three views in a main window and two sub
windows. Analysts can interactively switch between the views to explore the spatial
& temporal perspectives, and statistics of the movement rhythms on demand. Each
view supports a number of interactions to facilitate the exploration.

A → B → A... rhythms stay ∼2.5 h longer at B than those of
A → B → C ... rhythms, as shown in Fig. 8(a).

Second, since A → B → A rhythm comprises of mostly
employee movements on a working day, the aggregation makes
a wrong impression that employees arrive home very early at
∼17:00. In addition, the aggregation further adds on to incorrect
temporal information for the movements after B. For instance,
Fig. 8(b) shows that people of A → B → C → A rhythms go back
to A at ∼20:00, which should be ∼18:30 as shown in Fig. 8(a).

5.6. User interactions

As illustrated in Fig. 9, our visual interface arranges the three
views in a main window and two sub windows. Analysts can click
on one sub window to switch the views in the main and the
selected sub window. Apart from this and the basic interactions
supported by each view, our system supports the following inter-
actions:

Spatial Filtering: In the Rhythm Density View, analysts can filter
itineraries starting from one or multiple regions, by using a lasso
tool or selecting one from the administrative regions, see the pink
regions in Fig. 9 for examples.

Temporal Specification: Analysts can also specify a time period
for exploration by adjusting the interactive time slider imple-
mented in the Rhythm Sequence View.

Rhythm Selection: A specific movement rhythm can be selected
by clicking on the corresponding rhythm glyph in the Rhythm
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Fig. 10. Study 1: Analyzing statistics of frequentmovement rhythms identified from
all movements in the one-week Singapore public transportation data.

Statistic View, or by connecting the filtered regions sequentially in
the Rhythm Density View, as illustrated in Fig. 9.

All these interactions are linked among the three views, to facili-
tateMulti-perspective Analysis ofmovement rhythms. For example,
if analysts select a particular rhythm in Rhythm Statistic View,
Rhythm Density Viewwill only present origin/destination densities
of the movements in that particular rhythm, and Rhythm Sequence
Viewwill also update correspondingly.

6. Case studies

We have conducted four case studies with our system running
on an Intel Core i7 2 2.8 GHz MacBook Pro with 16GBmemory and
an AMD Radeon R9 M370X graphics board. It takes about 20 min
to index and identify rhythms for all movements in the Singapore
public transportation data, and less than one minute for the MIT
reality mining data. After that, our system supports interactive
exploration.

6.1. Analyzing frequent movement rhythms

With Rhythm Statistic View, our system provides the analysts
an overview of the statistics about frequent movement rhythms
(T1). Fig. 10 presents the statistics for the frequent movement
rhythms identified from all itineraries in the Singapore public
transportation data.

From the figure, we can firstly identify that 12 frequent move-
ment rhythms contribute to over 95% of all movements. Secondly,
by summarizing the movement rhythms based on the number
of places visited (separated by the dashed line), we can notice
that they can be approximated with an exponential distribution.
Specifically, the rhythmswith 2 places visited occupy∼64.5%,with
3places∼23.8%,with 4 places∼6%, and so on.We can also discover
that journeys of daily movements are limited, with ∼90% of the
movements having less than 3 journeys. These observations sup-
port the findings about human’s daily mobility revealed in Schnei-
der et al. (2013), where the authors identified 17 representative
mobility motifs by analyzing survey and mobile phone data.

6.2. Exploring spatial distribution of journey origins and destinations

In Study 2, we are interested in exploring the spatial distri-
bution of journey origins and destinations (T2). In particular, we
firstly select a particular movement rhythm, A → B → A,
and specify the itineraries’ starting time within 07:00–09:00. We
choose this rhythm and time period since it correlates with the
pendulummovement pattern, which describes movements of em-
ployees commuting between residence and work locations in a
working day (Rodrigue et al., 2013).

Then, we explore origin and destination distributions of the
first and second journeys in the Rhythm Density Views, as shown in
Fig. 11. In particular, Fig. 11(a) & (b) presents origin and destination
distributions of first journeys, i.e., A → B, while Fig. 11(c) &
(d) presents these distributions of the second journeys, i.e., B →

A. Notice that to keep consistency, we have fixed the maximum
values in all four density maps the same as 19,956, but actual
maximum volumes in Fig. 11(a) & (d) are only ∼5000.

By carefully examining the figures, we can make the follow-
ing observations. First, we find that Fig. 11(a) matches well with
Fig. 11(d), while Fig. 11(b) matches well with Fig. 11(c). Hence,
with thehypothesis of pendulummovements,we can consider that
Fig. 11(a) & (d) presents the residence locations, while Fig. 11(b) &
(c) presents work locations. Second, all figures show that origins
and destinations are mostly following subway stations, showing
the subway system plays an important role in public transporta-
tion; see the correspondence between the density hotspots and
subway lines. Lastly, Fig. 11(b) & (c) shows a more centralized
distribution of work locations, as more deep blue colors can be
identified. Specifically, the areas highlighted in (e) & (f) showmore
densities in Fig. 11(b) & (c) than in Fig. 11(a) & (d). This observation
is verified by some transportation researchers, as (e) is a central
commercial area, and (f) is an industrial area.

6.3. Comparing temporal perspective of movement rhythms differ-
ences for different time periods

In Study 3, we compare the temporal perspective of movement
rhythms differences, which is related to T3. Here, we firstly specify
a morning period as 07:00–09:00, and afternoon period as 13:00–
15:00, and then filter the itineraries starting in the Monday morn-
ing, Monday afternoon, Sunday morning, and Sunday afternoon.
Lastly, we compare their corresponding Rhythm Sequence Views as
illustrated in Fig. 12(a)–(d). To facilitate the comparisons, we scale
the heights of root nodes based on their volumes.

By comparing the views between Monday and Sunday, i.e.,
comparing Fig. 12(a) & (b)with Fig. 12(c) & (d),we can find: first, on
Monday, the volume of movements starting in the morning period
(634,308) is much higher than that in the afternoon (143,992);
whilst on Sunday, the volumes are nearly equal (213,827 vs.
196,276). This difference is likely caused by vast amount of em-
ployee movements in Monday morning. Second, these employees
spend a longer duration at their work locations, as we can see the
B nodes in Fig. 12(a) are ∼2 h longer than that those in Fig. 12(c);
whilst those in Fig. 12(b) & (d) are almost the same.

By comparing the views between morning and afternoon, i.e.,
comparing Fig. 12(a) & (c) with Fig. 12(b) & (d), we can further
find that the percentages of movement rhythms change, whilst
these differences are not obvious between Monday and Sunday.
Specially, the percentage of A → B rhythm has increased quite
a lot in both afternoons, showing that more people starting their
journeys in the afternoon do not go back. In addition, through these
movements start later, they leave B at nearly the same times as
these in Fig. 12(a) & (c). This indicates that evening peak traveling
demand is not only caused by employeemovements starting in the
morning, but also by other movements starting in the afternoon.

6.4. Exploring movement rhythms in the MIT reality mining dataset

In Study 4, we explore movement rhythms in the MIT reality
mining dataset. As described in Section 3.2, the total number of
individual itineraries is ∼11K. However, there exist many stays
with durations in short times, such as 10 s and less. We suspect the
following two reasons: (1) locations generated bymapping cellular
towers have low accuracy, and (2) the subjects moved frequently.
To address this issue, we set a minimum stay duration of 10 min:



W. Zeng et al. / Visual Informatics 1 (2017) 81–91 89

Fig. 11. Study 2: Exploring the spatial origin and destination distributions of journeys with their corresponding itineraries in the movement rhythm A → B → A and
itineraries’ starting time within 07:00–09:00: (a) & (b) present the origins and destinations of the first journeys A → B, and (c) & (d) present those of the second journeys
B → A.

Fig. 12. Study 3: Comparing the temporal perspective of movement rhythm differences for different time periods: (a) Monday morning, (b) Monday afternoon, (c) Sunday
morning, and (d) Sunday afternoon.

the stays with durations below the threshold are ignored. We also
ignore itinerarieswith only one stay, to better comparewithmove-
ment rhythms extracted from the Singapore public transportation
data. In the end, we filter 2331 itineraries, and the corresponding
Rhythm Sequence View is shown in Fig. 13.

Comparingwith themovement rhythms in the Singapore public
transportation data, we can identify many differences. From the
figure, we can easily find some frequent rhythms, e.g., A → B,
A → B → C , and A → B → A. However, the rhythms have differ-
ent percentages compared with these in the public transportation
data. For instance, A → B rhythm occupies nearly 50% of thewhole
movements, while A → B → A occupies only 15%. Besides rhythm
percentage differences, traveling times and staying durations also
show different patterns. Apparently, all traveling times are much
longer while stay durations are shorter than these in the public
transportation data. For instance, it takes on average∼5 h to travel
from A to B, and people stay in B for only ∼2 h.

We suspect many reasons that lead to the differences:
(1) The data in Singapore only records the passengers’ movements
through public transportation, while travels through other modes
are ignored, such as taxi trips. (2) The movements recorded in the
MIT reality mining data could be noisy (only 100–200m accuracy),
whilemapping spatial information to public stops in the Singapore
public transportation data is much more accurate. (3) The data
cleaning approach employed in theMIT reality mining dataset, i.e.,
filter out stays with durations less than 10 min, is not very appro-
priate. (4) The MIT reality mining dataset records movements of
only students and laboratory staff, while the public transportation
data covers much more diverse populations in Singapore.

7. Expert interviews

The research is motivated by discussions with a team of trans-
portation researchers (denoted as Experts A). We also conducted
one-on-one interviewswith two independent experts. One of them
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Fig. 13. Study 4: Exploring movement rhythms identified from the MIT reality
mining dataset.

is from a research institute (Expert B) with a research focus on hu-
manmobility analysis, and the other (Expert C) had 3 yearsworking
experience on public transportation management in Singapore.

In the interviews, we firstly explained our interface design and
visual encodings when our system is loading and modeling the
data. We then demonstrated how our system works and showed
them the case studies. Lastly, the experts explored the system by
themselves. Each interview lasted for 40 min to 1 h, and their
feedbacks are summarized as follows.

Visual design and interactions. Overall, all the experts appreci-
ated our visual analytics system. They thought our visual designs
are simple to follow, meanwhile informative for the analytical
tasks. Expert B was very impressed by the Rhythm Density View, as
most densitymapshe saw inmobility analysis papers are to ‘‘divide
the city into cells and color each cell’’. Our densitymap ‘‘looksmore
visual appealing than these maps’’. The experts were especially
impressed by the design of the Rhythm Sequence View, as it can
‘‘clearly present major movement patterns and stay durations’’.

They also agreed that the three views are well linked. Experts A
emphasized that the ability to switch between different views can
greatly enhance analysts’ exploration of human rhythms. Expert B
appreciated our system’s capability of filtering movements over
space and time, as it is ‘‘really helpful to explore details about
human movements’’. Without these interactions, the movement
rhythms presented in Study 3 are nearly impossible to identify.

Limitations and improvements. The experts also gave fruitful
suggestions to improve our system. Through the development of
our system, we had continuous discussions with Experts A and
refined our designs based on their comments. Actually in the early
design stage, we employed the alternative design as shown in
Fig. 8(b), and Experts A immediately pointed out the problems.
Besides, Expert B recommended to present temporal distribution
of traveling times and stay durations in the Rhythm Sequence
View, as such information can help ‘‘identify mobility outliers’’.
Nonetheless, we consider this a common issue for all existing
works that aggregate eventswhen visualizing event sequence data.
Expert C also suggested that the system may be more useful if
we can incorporate land-use data in the analysis, e.g., residence,
shopping. In thisway, users can know the environments and better
understand ‘‘why people travel between locations’’.

Usability. Our tool can be helpful for researches on human
mobility analysis. From his experience, Expert B pointed out that
‘‘interactive exploration tool is really needed when analyzing hu-
man mobility.’’ Expert C also agreed that our system is applicable
in urban planning and transportation management. He confirmed
the residence locations around subway lines in Study 2, as ‘‘Sin-
gapore aims to improve the convenience to travel through public
transportation for all residents.’’

8. Discussion

Applicability. Though this research focuses on movement data,
we believe our system can be extended to explore any spatially
distributed event sequence data, e.g., eye movement traces and
patient medical history. In particular, our rhythm tree construc-
tion algorithm can be generalized for aggregating any event se-
quences by associating an event with N successive events. In
LifeFlow (Wongsuphasawat et al., 2011), N equals to 0; in our
work, N equals to 1. A larger N may be more appropriate in some
other applications, such as genome sequence and chess game,
where two and more sequential events have more meanings. In
addition, from visualization perspective, we can achieve a multi-
scale aggregation of event sequences by adjusting N . In this sense,
Fig. 8(a) can be considered as a detailed view of Fig. 8(b).

FutureWork. There aremultiple directions for futurework. First,
in the data modeling step, we index the movements spatially on
stops, which costs too much memory and is not scalable. In the
future, we plan to implement an advanced indexing mechanism,
such as Ferreira et al. (2013), to improve the query efficiency.
Second, as pointed out by Expert C, our system lacks semantic
context of the environment, and thus cannot explain why people
move between locations. Regarding this, we plan to incorporate
land-use data in our analysis, and this will require advanced data
mining techniques to automatically fuse the two datasets. Lastly,
we foundmost of traveling times and stay durations follow normal
distributions with mean values the same as the averaged times in
the Rhythm Sequence View. In the future, we aim to explore new
visual designs that can plot this information intuitively.

9. Conclusion

In this paper, we present a visual analytics system designed
to facilitate transportation researchers’ work in exploring human
daily movement rhythms. We show how to identify movement
rhythms from rawmovement data, and thendepict thatmovement
rhythms can actually be modeled as event sequences. Thus, we
can employ event sequence visualizations to present the temporal
aspect of information. However, these visualizations can over-
aggregate the movement rhythms. To address this problem, we
devise a new tree construction algorithm based on the association
rule concept, which can preserve more details. The algorithm can
be applied to any event sequence data, and we also show that the
algorithm can be generalized to achieve a level-of-detail visualiza-
tion.

Based on these, we develop an interactive visual interface to
support the various analytical tasks. We use the system to conduct
four case studies on studyingmassive one-week public transporta-
tion data in Singapore and theMIT realitymining dataset. The stud-
ies show that human daily movements with public transportation
can bemostly describedwith 12 frequentmovement rhythms, and
the movement rhythms exhibit spatial and temporal variations.
The positive expert feedbacks show that an interactive visual an-
alytics system is helpful for domain-specific analysis; meanwhile,
it is clear that in-depth domain knowledge could be very helpful
for visual design, such as the identification of the over-aggregation
problem.
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