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Abstract

Public transport systems (PTSs) play an important role in modern cities. From the perspective

of commuters, PTS provides shared and rapid transport services that are essential for the gen-

eral public in a city. From the perspective of city management and urban planning, PTS has

significant economical, social and environmental impacts to an entire city. Hence, studying

PTS is highly beneficial to both individuals as well as a city as a whole, and it has long been

a hot topic in transport research. However, many conventional transport researches have long

been relying on simulation and survey data, making the results less of conviction.

Thanks to recent advances in sensing technologies, such as RFID cards, laser scanners and

GPS devices, movements acquisition has become convenient. Vast amount of urban public

transport data has been collected automatically and pervasively, promoting more research fo-

cus on analyzing and exploring public transport data when studying PTS. However, analyzing

massive urban public transport data is a challenging task due to its high-complex, large-size,

multi-mode and spatio-temporal characteristics. To get over these challenges, visual analytics

show great potential as they can make the way of processing public transport data transparent:

Visual analytics can provide interactive means for transport researchers to examine the actual

processes of analyzing data instead of just the results.

This thesis investigates advanced visualization technologies for analyzing and exploring mas-

sive urban public transport data that consists of commuter RFID card data, transport network

and transit schedule in Singapore. To address various analytical tasks raised by transport re-

searchers, a family of novel visual analytics systems have been developed. Specifically, three

aspects of high-level information, which are essential in transport modeling and analysis pro-

cesses, have been extracted from the input dataset for visualization and exploration:

ii



• Interchange Pattern, which describes how moving objects redistribute when entering

and passing through a junction node in a traffic network. A novel visual representation,

namely the interchange circos diagram, has been proposed to present interchange pattern

emerged from the public transport data.

• Waypoints-Constrained OD Pattern, which restricts origin-destination (OD) pattern with

commuter trajectories passing through user-specified entry and exit waypoints in a trans-

port network. A novel unified visual representation, namely the waypoints-constrained

OD view, has been proposed to explore waypoints-constrained OD pattern.

• Mobility, which can be considered as the travel efficiencies of commuters through PTS.

An integrated visualization with three modules: isochrone map view, isotime flow map

view and OD-pair journey view, has been proposed to address a family of analytical tasks

based on inputs from transport researchers.
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Chapter 1

Introduction

1.1 Background

Public transport system (PTS) is an important infrastructure in most modern cities. From the

perspective of city management and urban planning, PTS is more than a service provider. It

has several significant impacts to a city: economically, since PTS reduces the overall transport

cost of a city [24, 81]; socially, since PTS ensures all members of a city are able to travel [128];

and environmentally, since PTS generally saves more energy than private transport [17]. From

the perspective of commuters, PTS provides not only shared commuting services available to

everyone in the general public, but also rapid transit services via trains and subways, thus being

capable of efficiently moving large volume of people across a city. This is particularly impor-

tant for big cities in Asia, where private cars and taxis are not the major modes of transport,

and most people rely on PTS to travel in their daily lives.

Given the importance of PTS, many transport researches have been carried out to improve

traffic management and transport planning. In general, these researches need to possess an ac-

curate picture of the underlying movement patterns [117]. However, the majority of empirical

transport researches on understanding human movements rely on travel surveys [27] that have

obvious limitations, including high expense, small samples and low update frequency [117].
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Thanks to the recent development of sensing devices, such as personalized radio-frequency

identification (RFID) cards, GPS devices, laser scanners and video recorders, massive amounts

of urban public transport data have been collected in an automatic and pervasive way, providing

transport researchers a superior alternative to study the movement patterns.

Figure 1.1: An example of the EZLink card (left) and the card reader (right) in Singapore.

Specially in Singapore, commuters tap-in/out their personalized RFID card (referred as EZLink

card as shown in Figure 1.1(left)) to enter/exit the PTS that includes a bus system and mass

rapid transit (MRT). The EZLink card reader (Figure 1.1(right)) will record information like

the boarding and alighting stops of each commuter trip, see Section 3.2 for more details, and the

data is saved and owned by Singapore Land Transport Authority (LTA). LTA shares the data and

cooperates with other departments like Urban Redevelopment Authority (URA) and research

institutes like Future Cities Laboratory (FCL) to study and analyze how commuters utilize

the public transport services for the purpose of building up and improving the land transport

system in Singapore [15]. This thesis is a collaborative work between LTA and FCL, targeting

at investigating the commuter flows of Singapore PTS by exploring the massive EZLink data

such that to manage, plan and optimize these flows.

1.2 Research Objectives

Although the EZLink data contains plentiful information, the data itself has no value; instead,

only the right information extracted from the raw data shows its value in the process of de-
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signing strategies and making decisions. To automatically mine useful information from the

data, numerous data analysis methods such as data mining and statistics can be employed.

However, these methods still face significant challenges such as algorithm scalability and data

heterogeneity [116]. More importantly, these approaches have the problem of understanding

and analyzing the analyses: The results are only reliable in well-defined and well-understood

problems [70, 71].

Figure 1.2: The visual analytics process proposed by Kiem et al. [71].

Visual analytics has been developed to help address these challenges in recent years, which

is “the science of analytical reasoning facilitated by interactive visual interfaces” [118]. Fig-

ure 1.2 presents a popular visual analytics process for data exploration proposed by Kiem et

al. [71]. The illustration reveals two important features of visual analytics. First, visual analyt-

ics “combines automated analysis with interactive visualizations” [71], which allows humans

to progressively refine and evaluate the analysis results [116]. This is important: Analysts can

examine the analysis procedures if the information extracted is suspicious, and thus appro-

priate designed visual analytics can make the way of data mining and knowledge discovery

transparent [118]. Second, visual analytics is an inter-disciplinary research field that combines
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various related research domains such as visualization, data mining, human-computer interac-

tion, and application domains, such as transport and GIS. Existing procedures and models in

application domains can contribute to the development of effective visual analytics tools. On

the other hand, effective visual analytics tools can also help domain experts refine their models

and analysis process.

However, there is very little amount of work to develop visual analytics for transport re-

searchers to explore and analyze massive urban public transport data. This is particularly due

to the special characteristics of the data, including 1) big data volume: the data consists of

millions of commuter trips each day; 2) complex network: the public transport includes around

hundred MRT stations and thousands bus stops; 3) multi-modes transport: commuters can

travel through the public transport in multiple modes such as bus and MRT, and they can also

switch between these modes by walking; and 4) spatial and temporal patterns: the movement

patterns can vary drastically in both time and space dimensions. See Section 3.3 for a more

detailed description of characteristics of the input dataset.

Figure 1.3: The information visualization reference model proposed by Card et al. [28].

Therefore, we set the overall objective of this thesis to develop effective visual analytics systems
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for transport researchers to facilitate the understanding of commuter flows from the massive

urban public transport data. To achieve this goal, we closely follow the agenda in the infor-

mation visualization reference model [28] as shown in Figure 1.3. This model describes the

process of developing interactive visualizations motivated by a user’s task in three steps: 1)

transform the raw data into data tables; 2) map the data tables into visual structures; and 3)

build visualizations from the visual structures. The user can observe the views, and interac-

tively control the process by adjusting any of the steps, if necessary.

Based on this model, we can explicitly subdivide the overall objective to the following specific

goals in the course of this thesis:

• Data Transformation: Identify the analytical tasks that transport researchers would like

to address, and develop efficient mining techniques to extract the related information

from the raw EZLink data.

• Visual Mapping: Explore state-of-the-art visualization techniques that can be used to

present the extracted information, and formulate novel visual encodings to map the in-

formation into more efficient visual representations.

• View Transformation: Develop interactive visual analytics systems that employ the

visual encodings and interaction techniques to meet transport researchers’ needs of ana-

lyzing and exploring the information.

1.3 Research Contributions

In close collaboration with transport researchers from the Mobility and Transport Planning

Module at Future Cities Laboratory, we identified a key focus in transport domain, i.e., origin-

destination (OD) pattern. As it summarizes people and goods movements across transport
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zones, OD pattern provides primary information in transport planning and forecasting pro-

cess [129]. Although many visualization methods can be employed to visualize OD patterns,

including flow maps [120, 121], edge-bundling [34, 60, 76, 39, 62] and matrix visualiza-

tions [46, 51], we find they cannot fully meet needs of the transport researchers.

Generally speaking, these visualizations are dedicated to presenting global movements across

a whole area or region. However, in many cases, transport researchers would like to explore

local features of OD patterns, such as to study the trips passing through a specific location or

path, and to analyze not only the movements, but also OD-related travel time information. As

shown in Figure 1.4, we summarize these OD-related analytical tasks emerged from transport

domain into the following three scales:

Multi-scale OD Analytical Tasks

Small Medium Large

Figure 1.4: Multi-scale analytical tasks of OD patterns emerged from transport domain. 1)
Small-scale: analyze how moving objects redistribute themselves at junctions, e.g., crossroads,
bus stops; 2) Medium-scale: study origins and destinations of the trajectories successively pass-
ing through an entry and exit waypoints; and 3) Large-scale: explore all reachable destinations
from a starting location within certain time period.

• Small-scale (Chapter 4)

Small-scale OD pattern, which is referred as interchange pattern in this thesis, describes

how moving objects redistribute when entering/passing through a junction node in the

transport network. Interchange pattern is a highly valuable means not only for unveiling
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human movements at junctions, such as crossroads and bus stops, but also for assist-

ing transport planning. For instance, interchange information can help reveal the road

junction utilization and suggest crossroad design, e.g., adding a fork.

• Medium-scale (Chapter 5)

Medium-scale OD pattern, which is referred as waypoints-constrained OD pattern in

this thesis, associates with trajectories that successively pass through an entry and exit

waypoints in the transport network. Such aspect has not been explored in previous visu-

alization research, and has practical value in transport, e.g., the study [132] showed that

only a few (less than 2%) of the road segments in urban areas give rise to congestions.

• Large-scale (Chapter 6)

Large-scale OD pattern explores all reachable destinations from a starting location within

certain time period, which considers the mobility in the entire transport system. Mobility

measures a transport system’s ability to move goods and people to their destinations

based on the quantity and quality of physical travel [82]. Traditional transport planning

aims at improving the mobility of transport systems. Thus, studying the mobility of a

transport system is highly beneficial to both individuals as well as an entire city as a

whole.

This thesis has made several contributions to develop novel visual analytics for massive urban

public transport data. In more detail, we have accomplished the following achievements to

meet the objectives of this thesis:

• Data Transformation

Multi-scale analytical tasks have been identified from transport domain, and correspond-

ing information have been successfully transformed from the massive urban public trans-

port data: Chapter 4 studies interchange pattern, where the data is transformed into

interchange matrices, summarizing the movements at junctions; Chapter 5 focuses on
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waypoints-constrained OD pattern, where an efficient hashing-based query method has

been proposed to extract related information from the data in real-time; and Chapter 6

explores mobility of a PTS, where detailed mobility-related factors, such as riding time,

transfer time and waiting time, have been successfully derived from the data.

Figure 1.5: Novel visual representations proposed in this thesis from left to right: interchange
circos diagram [151], waypoints-constrained OD view [152] and OD trip journey view [150],
corresponding to the small-, medium- and large-scale OD-related analytical tasks, respectively.

• Visual Mapping

A family of novel visual representations that map the related information into more ef-

ficient visualizations have been proposed: Chapter 4 formulates a new model of circos

figure, namely the interchange circos diagram, to present interchange patterns at junction

nodes in a bundled fashion, and improve color assignments to respect the connections

within and between junctions; Chapter 5 derives an unified visual representation called

the waypoints-constrained OD view that integrates the flow map, heat map, and Sankey

diagram to support the medium-scale OD-related analytical tasks; and Chapter 6 designs

an integrated visual representation with there visualization modules, including isochrone

map view, isotime flow map view and OD-pair journey view.

• View Transformation

Three visual analytics systems have been developed, allowing transport researchers to in-

teractively explore and analyze the data: Chapter 4 develops an analytics system to help
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transport researchers interactively study interchange patterns in a spatio-temporal man-

ner, including 1) multi-spatial scales, i.e., from network junctions such as train stations to

people flow across and between larger spatial areas, and 2) temporal changes of patterns

from different times of the day; Chapter 5 proposes waypoints-constrained OD visual

analytics, which allows users to interactively specify entry and exit waypoints in the

transport network, and explore the corresponding OD patterns subject to the trajectories

that successively pass through the waypoints; Chapter 6 also designs an analytics system

that devises several interactive visual query methods, allowing transport researchers to

easily explore the dynamics of PTS mobility over space and time.

Besides, each chapter presents case studies and interviews with transport experts to demon-

strate the usability, effectiveness, as well as limitations of our visual analytics.

1.4 Thesis Organization

The remainder parts of this thesis present the contributions in more details: Chapter 2 sum-

marizes the related work in the fields of movement pattern analysis, visual analytics for move-

ment data and visualizing urban transport. Chapter 3 presents a detailed description of the

input dataset and and its applications in transport domain. Chapter 4 introduces a novel visual

representation, namely interchange circos diagram, aiming at revealing commuter interchange

patterns in a traffic network. Chapter 5 presents waypoints-constrained OD view, a novel uni-

fied visual representation designed to explore the OD patterns associated with the commuter

trips successively passing through users-specified entry and exit waypoints in the transport net-

work. Chapter 6 describes an integrated visual analytics with three visualization modules, i.e.,

isochrone map view, isotime flow map view and OD-pair journey view, aiming at presenting the

mobility of a PTS. Chapter 7 concludes this thesis with a brief summary of the achievements

made, and suggestions and thoughts for future work.
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Chapter 2

Related Work

Urban public transport data can be considered a subset of movement data, which associates

with people and goods flows in urban environments, and visualizing and exploring movement

data have always been a hot research topic in many fields, including cartography, GIS, geog-

raphy, transport, and visualization etc. This chapter mainly reviews the related work in the

following three categories: 1) movement pattern analysis, 2) visual analytics for movement

data and 3) visualizing urban transport.

2.1 Movement Pattern Analysis

Movement patterns generally describe any recognizable regularity or any interesting relation-

ship within a group of moving objects in space and time [36], which are widely available in

the nature world, e.g., a flock of birds, a herd of land animals, and a school of fish [100].

Reynolds [100] modeled the aggregated movements as interactions between the behaviors of

individual moving object. However, this approach may not be efficient and robust anymore

to handle the emerging vast amount of movement data, which can easily comprise thousands,

and even millions of moving objects nowadays. Instead, various mining approaches have been

proposed to effectively retrieve the movement patterns from raw data. In this section, we firstly
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give a brief summarization of these mining approaches, and after that, we describe some ex-

amples that apply mined movement patterns to understand mobility-related phenomenas.

2.1.1 Movement Pattern Mining

Data mining is a process of knowledge discovery that applies specific algorithms for extracting

patterns from data [40]. Regarding movement data, various data mining techniques can be ap-

plied to discover usable knowledge about the behaviors of different types of the moving objects

in both space and time [79]. Dodge et al. [36] summarized the mining techniques for move-

ment data analysis, and suggested some potentially useful dimensions towards a taxonomy of

describing and classifying movement patterns: generic vs behavioral, primitive vs compound,

and group vs individual.

REMO [77], which analyzes the RElative MOtion of individual object to the motions of all

others by comparing their motion attributes over space and time, is a widely adapted in min-

ing movement patterns. REMO firstly transfers the movement data into a matrix featuring

the motion attributes, and then formalizes motion patterns by matching it with the formulated

matrix. The authors illustrated how to extract simple movement patterns (e.g., constancy, con-

currence and change) from movement data. They [80] further defined some more complex

spatially-constrained movement patterns (e.g., flock, leadership, convergence and encounter),

and discussed how to mine them with REMO. Two case studies were presented to demonstrate

the effectiveness of REMO by identifying non-trivial and meaningful movement patterns in the

movement data [78]. Later, Gudmundsson et al. [49] speeded up the mining process of REMO

by devising new approximation algorithms derived from computational geometry methods.

Besides REMO, Giannotti et al. [47] formalized a general statement of movement patterns

mining problem that depicts movement patterns as frequent behaviors in both time and space.
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Based on the formalization, they proposed static and dynamic regions-of-interest based meth-

ods to extract frequent patterns from movement data. Pelekis et al. [95] introduced a set of

distance operators to compute similarity between two trajectories, which can be employed not

only to query similar movements, but also to cluster and classify the movements. Dodge et

al. [35] proposed another method to segment and classify movements, which extracts local fea-

tures from individual movement and compares them with global descriptors computed from an

entire movements set.

2.1.2 Movement Pattern Applications

Movement patterns can help understand mobility-related phenomena, which is highly impor-

tant in many domains. For instance, Brockmann et al. [25] assessed the circulation of bank

notes in USA, and discovered that the features of human travel can be quantitatively accounted,

where “the distribution of traveling distances decays as a power law”. The discovery of human

movement pattern can be applied to study the spread of human infectious diseases.

In particular, when the movement patterns represent aggregated abstraction of many people

trajectories within urban environments, they are highly useful means in the domains of city

planning, transport design and traffic management. There has been an extensive amount of

related works on analyzing the urban traffic data, thus here we give a brief summarization of

them with an example of Microsoft’s urban computing, which aims at acquiring, integrating,

and analyzing big and heterogeneous data generated by a diversity of sources in urban spaces

to tackle the major issues that cities face [153]. T-dirve [148, 149, 147] is an example of urban

computing applications, which is a smart driving direction service that finds the fastest route

to a destination based on mined directions from historical taxi trajectories. And by associating

the taxi trajectories with points of interests (POIs), they can further cluster the city into regions

and estimate the region functionality [146].
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2.2 Visual Analytics for Movement Data

There have been a long history in geography to develop interactive visual tools to explore and

analyze movement data that can be mapped geographical space. Gahegan [43] outlined four

barriers in the development of visualization tools for analyzing movements in geoscience: 1)

rendering speed, 2) perceptual anomalies, 3) approaches and mappings, and 4) user orienta-

tions. Correspondingly, MacEachren and Kraak [87] suggested the following primary themes

in geovisualization field: 1) visual representation of movements, 2) integration of visualiza-

tion with computational methods 3) interface design and 4) cognitive/usability studies. These

themes can also be applied when developing visual analytics tools for movement data.

Recently, visual analytics of movement data has also been a hot research topic in the visu-

alization community, and extensive visual analytic tools have been developed to present the

spatial and temporal semantics of movement data. Andrienko et al. [8, 11] presented a struc-

tured survey of the state-of-the-art visual analytics methods, tools and procedures. Here, we

categorize the related works into temporal-oriented, spatial-oriented, spatio-temporal-oriented,

and pattern-oriented visual analytics of movement data.

2.2.1 Temporal-Oriented Visual Analytics

Extensive amounts of efforts have been devoted to develop visualization methods to meet the

needs of analyzing and understanding time-oriented data, i.e., the data is varying over tempo-

ral dimension, see [2, 3] for comprehensive surveys. In particular, Aigner et al. [2] highlighted

that the time dimension could be linear or cyclical, so different visualization strategies could

be adopted for different situations accordingly. For example, Havre et al. [56] proposed The-

meRiver that depicts temporal changes in thematic strength from left to right, which is suitable

to represent linear time data, e.g., the topic competition on social media over time [145]. On
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the other hand, Weber et al. [136] proposed spiral graph that visualizes temporal changes in a

circular manner, which better supports the identification of periodic structures in the cyclical

time data, e.g., sunshine intensity variation over days.

Movement data is ubiquitously time-oriented exhibiting both linear and cyclical patterns. For

instance, the positions of movements are changing with time in a linear manner, whereas the

travel times between an origin-destination pair is cyclical over days. To present the movement

changes in temporal space, various novel visual encodings have been proposed. For instance,

Tominski et al. [122] proposed spiral-based icons that map temporal dependencies into a 3D

dimension. Burch et al. [26] designed AOIRiver, which combines ThemeRiver and Sankey

diagram techniques to visualize the dynamic eye gaze movements over time.

Besides these novel visual encodings, some traditional visualization techniques can also be

applied, e.g., isochrone maps and cartograms.

Isochrone Maps. Isochrone maps are traditional visual representations used in transport and

urban planning, which display areas of equal travel time from a starting location in certain

time periods [137]. It usually employs contour lines/colors in its representation, and can be

easily overlaid on geographical maps for depicting time-related information such as accessibil-

ity [155, 86].

Cartograms. While isochrone maps display reachable areas from a particular location, car-

togram depicts proximities, such as time distance or travel costs, between locations in an Eu-

clidean space [112, 115]. A comparison of a cartogram with a geographical map can show

the distribution of proximities over space, while a comparison between cartograms drawn at

different times can reveal changes over the period [113]. Many algorithms have been devel-

oped to transform geographical space into temporal space, including multi-dimensional scaling

(MDS) [1] and timespace mapping [16]. Later, Shimizu and Inoue [113] showed that MDS and
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network mapping algorithms can actually be formulated into a generalized time-space trans-

formation solution.

2.2.2 Spatial-Oriented Visual Analytics

According to the First Law of Geography, where “everything is related to everything else, but

near things are more related than distant things” [119], spatial-oriented analysis of movements

can be formal quantitative studies of movements that manifest themselves in space, which

should be focused on location, area, distance and interaction [13]. The main problem of spatial-

oriented visual analytics of movement data is the visual clutter displayed on the screen due

to the large-size and high-complexity properties of the data. To address the visual clutter

problem and facilitate the analysis and exploration, appropriate aggregation and generalization

of movement data is generally employed [8]. In general, following methods can be applied to

summarize the movements in spatial domain.

Geographical Partition. Partition the geographical space into regions and then summarize

the movements in-between regions can effectively reduce the cluttering problem. Typically,

the geographical space can be partitioned according the the administrative units, e.g., states or

cities. Besides, regions can also be directly formulated from the movement data. For instance,

Guo [50, 53] developed a spatially graph-based partition method that can construct a hierarchy

of geographical regions from the movement data. Besides, Andrienko and Andrienko [10]

proposed a point-based partition method by extracting characteristic points from the movement

data and then grouping the points into regions according to their spatial proximities.

Density Estimation. Besides geographical partition, density estimation is another frequently

applied summarization method to address the cluttering problem. Based on kernel density es-

timation (KDE) [114], density maps can be generated as a mean to summarize large amount

of trajectory paths in space, so that to overview the distribution of moving objects. Hurter
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et al. [64, 63] developed FromDaDy, a multidimensional KDE visualization tool providing a

brush/pick/drop paradigm for users to explore large amount of aircraft trajectories across multi-

ple views. Willems et al. [141] also developed a density-map-based interface to visualize vessel

movements with large kernels to overview spatial utilization and reveal vessel highways, and

small kernels to show speed variations of individual vessel. They further improved the system

with interactive functionalities, such as specifying density fields, filtering the trajectories, and

exploring customized versatility of the movement data [106, 105, 107, 140].

Clustering. What’s more, clustering movements into groups and visualizing the groups of

movements can also address the cluttering problem by reducing the morphological complex-

ity, while accentuate important movement patterns. A variety of clustering methods have

been proposed to group the movements, including progressive clustering [102], traffic-oriented

and trajectory-oriented clustering [6], classifier-based clustering [9], vector-field based cluster-

ing [41], and traditional hierarchical clustering [154]. Vrotsou et al. [130] compared geometry-

based, density-based, and property-based clustering methods, and suggested different approach

should be employed based on the analysis tasks.

2.2.3 Spatio-Temporal-Oriented Visual Analytics

The entanglement of movements, i.e. they are happening in both space and time, adds to

the difficulty of analyzing and visualizing the movements [97]. Spatio-temporal-oriented vi-

sual analytics of movements attempt at presenting the moving objects over time as they move

through space, and understanding the correlations between space and time. These analytics

generally study three basic kinds of questions in analyzing the movement data: (1) when +

where→ what, (2) when + what→ where, and (3) where + what→ when [96].

3D View. To visualize both the spatial and temporal attributes, 3D views with the height

axis to denote time are frequently employed, which are normally refereed as space-time cubes
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(STC) [55]. Kwan [75] showed that 3D views can simultaneously present the spatio-temporal

dimensions of movement patterns, and facilitate the spatial-relation identification and different

subgroups patterns comparison. Among various STC applications, GeoTime [69] is perhaps

the best known software, which can be employed to display and track events, objects and

activities with combined spatial and temporal information (Figure 2.1(a)). Besides, Tominski

et al. [123] proposed to stack up 3D trajectory bands to visualize corresponding attributes of

the movement data (Figure 2.1(b)).

(a) (b)
Figure 2.1: Examples of 3D visualizations of movement data: (a) GeoTime [69] and (b)
stacking-based visualization [123].

Animations and Small Multiples. However, 3D views are normally considered deficient in

visual analytics field possibly due to occlusion, perspective distortion, increased complexity

of navigating and bad text legibility problems [29, 48]. Thus, animations [19] or small mul-

tiples [124] of 2D views are also frequently employed to visualize the temporal change of

movements over a period. For instance, Guo et al. [51] developed a visualization system with

a small multiple display to present both the spatial and temporal patterns in the movement

data. However, the animations and small multiples have evident drawbacks: with animations,

temporal variations are hard to track and identify [125]; and with small multiples, details are

difficult to observe due to the smaller display size [23].
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2D and 3D Comparison. Many experiments have been carried out to compare 2D and 3D

visualizations of movement data. Kristensson et al. [72] teased out that comparing to 2D,

3D visualization results in higher error rates for simple and direct queries, while performs

better when observing complex spatio-temporal patterns. Amini et al. [5] further showed that

interactions have significant effects on 2D and 3D visualizations: “scrubbing” the timeline for

2D, while camera navigation for 3D.

2.2.4 Pattern-Oriented Visual Analytics

Various data mining techniques have been proposed to extract movement patterns in the data,

see Section 2.1.1 for more details. Pattern-oriented visual analytics present these extracted

movement patterns to users for interpretation, evaluation and synthesis [8]. The visual analytics

can allow users to catch sights of noteworthy knowledge by directly looking and interacting

with the visualization. Here we demonstrate how patten-oriented visual analytics work with

following examples in visualizing OD patterns.

Visualizing OD Patterns. OD pattern summarizes the movements between locations, which

could be mostly common among various movement patterns. A family of visualization tech-

niques can be employed to visualize OD patterns in movement data, including:

• Flow Map. Flow map joins origins and destinations by straight/curved arrows with line

width indicating aggregated flow volume [120, 121], which maybe the most common vi-

sualization approaches for presenting OD data. Other than joining the ODs directly, Phan

et al. [98] proposed flow map layout method that automatically clusters nodes into a tree-

like hierarchical structure, and then bundles neighboring flow lines to present the general

flow trend. Verbeek et al. [127] further improved the layout by computing crossing-free

flows based on a spiral-tree method.
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However, flow map has certain issues: 1) visual clutter would easily occur when applied

to large amount of movement data; 2) longer flow lines can easily overlap and occlude

shorter flow lines [143]; 3) modifiable area unit may generate different aggregation (or

even wrong) patterns [45, 92]; and 4) the aggregations are often dramatically different

in size [52]. To address these issues, partition the geographical space into larger regions

before applying the flow map may effectively resolve the visual clutter problem [50, 10].

(a) (b)

(c) (d)

Figure 2.2: Examples of edge bundling techniques applied to visualize US migrations: (a)
geometry-based [34], (b) winding roads [76], (c) force-directed [60], and (d) kernel density
estimation-based [62].

• Graph Visualization. Another approach to visualize OD data is to employ graph visu-

alization techniques, which denote origins and destinations as nodes, and thus can rep-

resent the flows in-between origins-destinations with directed edges. For instance, ex-

tended arc diagrams were proposed to visualize the traffic flows between different stops

in the public transit network [90]. For large OD pairs, the graph visualization may also

suffer from cluttering problem with excessive edge crossings. Edge bundling can effec-

tively facilitate the visualization by grouping edges into bundles, and a family of bundling

methods have been proposed, including geometry-based [34] (Figure 2.2(a)), winding

roads [76] (Figure 2.2(b)), force-directed [60] (Figure 2.2(c)), skeleton-based [39] and
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kernel density estimation-based [62] (Figure 2.2(d)).

• Matrix Visualization. Mathematically, OD data is an M-by-N matrix, summarizing flow

volumes from M origins to N destinations. Thus, another commonly employed approach

to visualize OD data is matrix visualization, which can produce better readable represen-

tations than the graph-based approach when the OD pairs are large [46]. Guo et al. [51]

showed that the rows and columns of OD matrix can be sorted and re-ordered to reveal

the apparent clusters. And Wood et al. [142, 143] improved the OD matrix visualization

by dividing the geographical domain into regular grids to preserve the spatial structure

of the origins and destinations.

• Boyandin et al. [22, 21] specifically focused on visualizing and exploring temporal

changes in the OD data. They designed Flowstrates [22], which shows origins and

destinations on two separate geographical maps on the left and right, respectively, and

presents temporal changes by a heat map in the middle.

2.3 Visualizing Urban Transport

Thanks to the advancement in sensing devices, such as mobile phones, GPS devices, laser

scanners and RFID cards, collecting urban transport data have become easier. Many visual-

ization works aiming at improving the understanding of human mobility have been developed

with state-of-the-art information technologies in recent years. More specifically, these visual-

izations can be classified into three categories: transport network visualization, urban traffic

simulation, and urban traffic visual analytics.

2.3.1 Transport Network Visualization

Urban transport networks have become increasingly complex. Only considering the public

transport networks in metropolitans like London and New York, they can easily comprise hun-
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dreds of subway stations and thousands of bus stops. The complexity brings challenges to

develop visualizations to explore and analyze the network.

In 1931, Mr. Harry Beck created the famous London Underground Tube Map that connects

the subway stations with straight and 45 degree lines [44]. Since then, the idea has inspired

the designing of most metro maps around the world [94], and they are generically referred as

schematic maps. Many algorithms have been proposed to automatically generate appealing

schematic maps, including mixed-integer programming [91], focus+context [133], spatially

efficient [144] and transit-centric [32].

Schematic maps basically overview the transport network’s essential topological relations across

stops. The maps serve as visual aids to assist commuters navigate the network and plan routes

from their origins to destinations [89]. Through a user study, Bartram [18] confirmed that

commuters can navigate the transport network efficiently and accurately with schematic maps.

Meilinger et al. [88] further explored and confirmed the value of schematic maps for easier

wayfinding and self localization.

2.3.2 Urban Traffic Simulation

To enhance the sense of immersion, simulation techniques are often employed to visualize the

dynamic motions of vehicles over time in 3D virtual cities. Two steps are often carried out to

construct a realistic simulation of traffic flows.

The first step is to construct an accurate road map that constrains the vehicle motions. Wilkie

et al. [138] proposed an efficient approach to generate a geometrically and topologically con-

sistent 3D road map from massive GIS data, where important road features are identified,

including highways, legal merge zones, and intersections. Similarly, Shen and Jin [111] also

simulated the traffic flows based on an urban arterial network with detailed information like

signalized crossing, merging and weaving areas.
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After synthesizing the road map, modeling and simulating the traffic can be implemented.

Helbing [58] broadly classified traffic simulations into two categories: macroscopic models,

e.g. [110], and microscopic models, e.g. [108, 111, 139, 30]. The main advantage of the macro-

scopic models is the computational efficiency, while microscopic can model the micro-level

behaviors of the vehicles, like lane-changing and vehicle-acceleration. Sewall et al. [109] gen-

erated interactive visual simulation of large-scale traffic flows by coupling the macroscopic and

microscopic models together. In order to integrate these two models, they proposed averaging

and Poisson-process techniques to make smooth transitions.

2.3.3 Urban Traffic Visual Analytics

Urban traffic visual analytics employ state-of-the-art visualization techniques to investigate and

analyze traffic patterns from urban traffic data in cities. It is a cross-disciplinary research field

that integrates knowledges in both transport and visualization domains. A family of studies

have shown that visual analytics can not only facilitate the understanding of urban dynamics

and human activities, but also enhance traffic management and assessment.

Among these studies, Guo et al. [54] designed TripVista to investigate and analyze microscopic

traffic patterns and abnormal behaviors at road intersections from spatial, temporal and multi-

dimensional perspectives. Liu et al. [83] proposed novel visual encoding schemes to display,

compare, and evaluate route diversity in-between given OD pairs in real taxi drivers trajectory

data, which can be applied to not only suggest better routes, but also analyze traffic bottlenecks.

And Liu et al. [85] developed VAIT, a visual analytics system for intelligent transport that

supports visualization and analytical queries of large traffic data.

More recently, Chu et al. [31] visually explored hidden themes of taxi movements in a city.

Wang et al. [134] designed visual analytics to support the analysis of traffic congestions in

city scale (Figure 2.3). They [135] further studied traffic congestion’s correlation with traffic
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Figure 2.3: An overview of the visual analysis system to explore traffic jam based on urban
traffic data proposed by Wang et al. [135].

flows on neighboring links. Meanwhile, Ferreira et al. [42] developed new models to support

interactive spatio-temporal queries of events from large traffic data set. Doraiswamy et al. [37]

proposed a visual exploration interface that can automatically identify interesting events and

trends by computing the topologies in the urban traffic data (Figure 2.4). Besides, Wang et

al. [131] designed an visual interface to evaluate traffic situations on particular roads, which

was supported by a bi-directional hash structure.

Figure 2.4: Minima events identification in NYC using topological analysis in urban traffic
data proposed by Doraiswamy et al. [37].

2.4 Inadequacy of Existing Methods

Though so many related works exist, they are not focusing on the multi-scale OD patterns

that this thesis aims to resolve. In particular, the inadequacy of these existing methods can be
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summarized as follows:

• Usability and applicability: Most existing movement pattern analysis works are not di-

rectly and practically usable and applicable as visual analytics this work aims to achieve,

since visual analytics are aimed to facilitate domain experts in exploring and analyz-

ing the data, and to inform the general public with useful traffic and activity information,

while the knowledge retrieved from movement pattern analysis still needs to be presented

to end users in more intuitive and effective ways.

• Data source: Most existing urban traffic data visual analytics systems are developed

to study GPS-based movement data, while this thesis is focusing on urban public trans-

portation data. The differences between these two data sources include: 1) the public

transportation is multi-modes, such as bus, subway and walk, while the GPS movement

data normally records only single travel mode; 2) the public transportation data is more

sparse, since the tapping events are only recorded at stops, while the GPS movement data

updates frequently in every 30 seconds (or 1 minute); 3) many observations in the pub-

lic transportation correspond to one vehicle movement, while every record in the GPS

movement data is normally one vehicle. A more detailed description of properties of the

public transportation data is summarized in Section 3.3. In summary, the existing urban

traffic data visual analytics systems cannot be directly applied in this work.

• Multi-disciplinary: This work is a collaborative work with transportation researchers,

since the project is mainly funded by research grant that supports also a number of the

transportation researchers, whose offices are actually co-located together with that of the

author. Hence, the author has close discussions from the very beginning. In comparison,

the other visual analytics systems are mainly led by computer scientists and visualization

specialists that mostly lack of domain knowledge in transportation field.
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Massive Urban Public Transport Data

The process of global urbanization calls for an increasing demand of mobility in cities, and

more researchers and planners are realizing the importance of developing urban PTSs, which

can provide shared and massive transport services that are essential for general public. As such,

many researches have been carried out to study and analyze the underlying movement patterns

of commuters utilizing PTSs. Thanks to recent development of ubiquitous sensing devices,

massive amounts of urban public transport data are collected in an automatic and pervasive

way, providing transport researchers a preferable choice to study movement patterns.

This chapter firstly introduces relevant terminologies from transport research. After that, we

present an overview of the urban public transport dataset employed in this thesis, followed by

a description of the data characteristics and applications in transport domain.

3.1 Transport Terminologies

In the following, we list down some common terminologies about PTS [93] to facilitate the

discussion:

• A transport network consists of roads and subways, and is usually modeled as a directed
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graph data structure, where nodes are stops (metro station platforms and bus stops) with

geographical locations, and directed edges connect neighboring nodes;

• A transit route is a sequence of nodes and edges, starting and ending at bus/subway

terminals;

• A transit line is a public transport service offered by a certain transport mode, e.g., a bus

line and a subway line. There are two kinds of transit lines: bidirectional with two transit

routes between two distinct terminals, and cyclical with one single transit route starting

and ending at the same terminal;

• A trip refers to an individual transit route service taken between two stops/terminals;

• A transfer refers to a change of transit route services; it could happen at the same loca-

tion (e.g., a bus stop), or between two different but neighboring locations (e.g., between

different subway platforms or from subway to bus); and

• A journey is a commuter travel from an origin to a destination in the PTS; it could

comprise multiple trips and transfers.

3.2 Input Public Transport Dataset

The work described in this thesis is based on the following input dataset:

3.2.1 EZLink Data

The EZLink data records commuter trips in Singapore PTS over one week in 2011. The PTS

includes a metro system referred as mass rapid transit (MRT) and a public bus system, where

commuters use their EZLink cards to tap on card readers on buses or entries/exits at MRT

stations to go in/out of the PTS. The card reader system records every tap event, and also
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considers transfers between bus and MRT services: if the transfer time is≤30 minutes, the two

trips will be sequenced together and identified by consecutive transfer number.

The EZLink data has about five million trip records in total for one day. For each trip, following

information of the trip is recorded:

Column 1: Card ID, an anonymous ID of the EZLink card.

Column 2: Journey ID, ID of the commuter journey.

Column 3: Commuter Type, type of the commuter, among Child/Student, Adult and Elder.

Column 4: Transport Type, type of the transport mode, either BUS or RTS (Rapid Transit

System, including MRT).

Column 5: Service Number, transit route number for a BUS trip, such as 179 and 199; NULL

for RTS trips.

Column 6: Direction, direction of the BUS route; NULL for RTS trips.

Column 7: Bus Registration Number, unique number registered for a bus in the BUS route,

e.g., 9088 for a bus in transit route 179; NULL for RTS trips.

Column 8: Tap-In Stop, stop ID for the tap-in stop.

Column 9: Tap-Out Stop, stop ID for the tap-out stop.

Column 10: Ride Date, date of the trip starts, e.g., 11/04/11.

Column 11: Ride Starting Time, time recorded when the commuter enters the public transport

system, i.e., boarding a bus or entering an entrance of a MRT station.

Column 12: Ride distance, trip distance measured in kilometer.

Column 13: Ride Time, time spent in the PTS of the trip in minute, i.e., tap-out time subtract

tap-in time.
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Column 14: Fare Paid, fare paid for the trip in Singapore dollar.

Column 15: Transfer Number, the transfer sequence number of a journey, e.g., from Changi

Airport to NTU, commuters need to take XX line, then switch to route 179 at Boon

Lay. Thus, the XX trip will be assigned a transfer number 0, and 179 trip transfer

number will be assigned 1.

Figure 3.1 shows an example of EZLink records revealing a child/student journey traveling to

NTU (stop 27321) in the afternoon. The journey consists of three consecutive trips: First, a

bus trip taking bus route 98M from stop 28329 to stop 28319; second, a RTS trip from MRT

station A to MRT station B; and third, a bus trip taking bus route 179 from stop 22521 to stop

27321. Besides reconstructing the travel paths, one can also extract other information from the

records, such as travel times and costs.

Figure 3.1: An example of the EZLink records revealing a child/student journey traveling to
NTU (stop 27321) in the afternoon.

3.2.2 Public Transport Network

The network includes the road and MRT network in Singapore, which can be modeled as a

directed graph that contains around 47.9k nodes and 79.8k edges in 2011. In detail, the MRT

network contains four transit lines at that time, i.e., the XX line with green color, the YY line

with red color, the ZZ line with purple color and the WW line with yellow color as shown in

Figure 3.2, respectively.
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Figure 3.2: Singapore public transport network in 2011. Thin brown lines indicate the bus
network, while thick green, red, purple, and yellow lines indicate the XX, YY, ZZ and WW
MRT lines, respectively.

3.2.3 Transit Schedule

The transit schedule data includes the transit routes, stop facilities and transit schedule infor-

mation in 2011. Besides the four MRT lines, the transit routes data also includes around 350

bus routes in operation. There are in total around 4.8k stop facilities, including both bus stops

and MRT stations, each with the attributes of a geographical position, a name, a reference ID,

and a related edge connection in the PTS network. The transit schedule information is basi-

cally a timetable describing the scheduled times of each bus/train leaves its starting terminal,

and reaches each stop along its transit route.

3.3 Data Characteristics

The input EZLink card data consists of a massive collection of commuter trajectories traveling

in the urban public transport network, where each trajectory can be represented as an ordered
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sequence of observations on individual commuter [61]. The data can be considered as a special

case of movement data that describes a set of moving objects whose positions or geometric

attributes change over time [36].

As such, the input urban public transport data exhibits some general properties of common

movement data, such as:

• Big Data Volume: The data consists of about four million of commuter trips each day,

and there are 7 days records in total. The raw data came in CSV files with a total size

of approximately 4.2 GB. Notice that the public transport data only takes a single line to

record one trip. Comparing with other movement data that records many points along the

path for each trip, the file size is much smaller, but the information is equally plentiful.

• Complex Network: The public transport network includes thousands of nodes and

edges. Besides, the input dataset also includes around hundred MRT stations and thou-

sands of bus stops. These nodes, edges and stops can be integrated and modeled as a

directed complex network.

• Integral and Organic: From the input dataset, one can estimate both independent infor-

mation on each commuter, such as movement speed and direction; meanwhile, one can

also derive movement patterns on the entire data, such as density distribution [12].

• Spatial Variation: Variation of movement attributes, such as speed and density, exists

in the spatial dimension. Figure 3.3 presents a map depicting the travel efficiencies of all

bus routes in the period of 08:00 - 08:15. Here the travel efficiencies are quantized and

color-coded in five ranges: below -1.5σ , [-1.5σ ,-0.5σ ], [-0.5σ ,+0.5σ ], [+0.5σ ,+1.5σ ],

and above +1.5σ . Low travel efficiencies can be observed at downtowns, while high

efficiencies are observed at highways and suburban areas.

• Temporal Variation: The variation also exists in the temporal dimension. Figure 3.4

shows the distribution of alighting commuter volume at XXX MRT station during two
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Figure 3.3: Road network travel efficiency in the period of 08:00 - 08:15. Green and red colors
indicate high and low travel efficiency w.r.t. mean, respectively.

different periods, where left is in the period of 08:00 - 09:00, and right is in the period of

11:00 - 12:00. By comparing the two views, one can clearly find that more frequent and

larger volume of commuters are alighting in the period of 08:00 - 09:00.

Direction 1
Direction 2

Direction 1
Direction 2

Figure 3.4: Temporal variation of alighting commuter volume distribution at XXX MRT
station during different periods. Left: 08:00 - 09:00; Right: 11:00 - 12:00.

On the other hand, comparing with other kinds of movement data, the input public transport

data owns some unique characteristics including but not limited to:

• Sparsity: In terms of space, the tapping events are only recorded at stops; in terms of

time, the tapping events only happen when the vehicles approach/arrive stops. Thus, the
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EZLink data is sparse in both space and time dimensions. On contrast, many other kinds

of movement data are recorded in a quasi-continuous manner, such as periodically (e.g.,

in one-minute frequency) updated taxi data.

• Localization: Commuters taking PTS are aligned with vehicles, i.e., they travel on buses

or MRT trains. Thus, the trip paths are only limited to the public transit services routes,

instead of the whole transport network. On contrast, most other kinds of movements,

such as taxi trajectories, can move through the entire transport network.

• Uncertainty: For each trip, only the starting and ending locations, and the correspond-

ing times are observed. Although the speeds and locations of vehicles in-between two

consecutive stops can be probed from the data, they are uncertain.

• Multi-modes: Although commuters are only involved in PTS, they can travel through

the public transport in multiple modes such as bus and MRT, and they can also switch

between these modes through walking.

3.4 Data Applications

With the plentiful information in the records, the EZLink data can provide transport researchers

insights and knowledge of how commuters utilize the PTS. In the following, we discuss how the

input dataset can be applied in each step of the classical four-step model of transport planning

and forecasting:

Step 1: Trip Generation

In the trip generation step, transport researchers predict the number of trips originating

in or destined for each traffic analysis zone. Many factors may affect the estimation in

the zone, such as land uses, household demographics and social-economical factors.
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Figure 3.5: Origin and destination density in the morning retrieved from the input dataset, with
red color indicates more commuters originating in and blue color indicates more commuters
destined, respectively.

However, generally the researchers estimate the number based on only a subset of

these factors, and thus the results are normally not optimal.

As the EZLink data contains the commuter boarding and alighting location informa-

tion, one can accurately compute the number of trips in each zone. For example,

Figure 3.5 presents a composited density map showing commuter origins and destina-

tions in the morning. More commuters starting from residential areas can be observed,

while more commuters are ending at downtowns and industrial areas.

Step 2: Trip Distribution

After generating the number of trips in each zone, transport researchers match origins

to destinations in the trip distribution step. This is generally done with a gravity model

function, where the number of trips between two zones is negatively associated with

travel cost (including distance, time, and money) between them, and positively asso-

ciated with the amount of activities in each zone [129]. EZLink data can also provide

the distribution information as the origin and destination are matched in each record.
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Step 3: Mode Choice

In-between a particular OD pair, commuters may have multiple transport modes to

choose, including private transport like car, and public transport like subway and bus.

In the mode choice step, the proportion of each particular transport mode in-between

an OD pair is estimated. EZLink data also contains the transport mode information,

specifically referred as RTS or BUS.

Figure 3.6: Multiple routes retrieved in-between red circle as the origin and blue circle as the
destination from the input dataset.

Step 4: Route Assignment

Commuters may also have multiple routes to choose in-between an OD pair. In the

route assignment step, transport researchers assign travel route to each of the trip.

One can also assign the travel routes to each trip with information extracted from the

EZLink data: For BUS trips, one can retrieve the bus number and then map the number

onto the road network by referring to the transit schedule data; And for RTS trips, one

can retrieve the boarding and alighting stops and look for shortest-path/shortest-travel-

time travel path in the MRT network. Figure 3.6 illustrates an example of multiple

routes retrieved in-between red circle as the origin and blue circle as the destination

from the input dataset. Clearly we can observe that commuters choose either bus route

179 (pink) or 199 (green).

34



Chapter 4

Visual Analytics for Interchange Patterns

In this chapter, we focus on a novel aspect of visualizing and analyzing massive urban public

transport data, i.e., the interchange pattern, aiming at revealing commuter redistribution in

a traffic network. We first formulate a new model of circos figure, namely the interchange

circos diagram, to present interchange patterns at a junction node in a bundled fashion, and

assign the colors to respect the connections within and between junction nodes. Based on this,

we develop a family of visual analytic techniques to help transport researchers interactively

study interchange patterns in a spatio-temporal manner: 1) multi-spatial scales: from network

junctions such as train stations to people flow across and between larger spatial areas; and

2) temporal changes of patterns from different times of the day. Our techniques have been

applied to the input transport data, and we present also two case studies on how transport

experts worked with our interface.

4.1 Introduction

A number of advanced data acquisition technologies have been developed recently for captur-

ing movement data: location-positioning by cell phones and GPS, personalized user-tagged

cards for public transport, and video analysis for people and vehicle flows. These technologies
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benefit many scientific research disciplines, for example, the reconstruction of traffic flows

from traffic sensors [108], and functional road models for traffic simulation [138]. However,

such advancement also increases the data set size, thus making the problem of visualizing and

exploring movement data to be nontrivial. Traditional methods [75, 69], which directly plot

the object trajectories in 2D/3D, could simply fail because of visual cluttering and occlusion.

To address these issues, there are two major visualization approaches [8]: 1) pattern extraction,

which applies knowledge discovery methods [80, 47] to find out motion patterns; and 2) data

aggregation, which groups locations into regions and summarizes the movement data in a

regional basis [50, 10]. Here we consider both strategies. In particular, we are interested in

studying and visualizing a high-level aggregated motion pattern:

Interchange pattern, which describes how moving objects redistribute when enter-

ing and passing through a junction node in a traffic network.

Our formulation also considers the study of interchange patterns at different scales: train sta-

tions in a metro system, crossroads in a road network, or regional zones in a city.

Interchange pattern is a highly valuable means not only for unveiling mobility patterns, but also

for assisting transport planning. For instance, interchange information can help reveal the road

junction utilization and suggest crossroad redesign, e.g., adding a fork. A similar situation

is also shared by the case of train stations, where interchange patterns can help improve the

interior design of routes and platform connections within a station. At city scale, interchange

patterns of people flow can help indicate longer distance trips or detours that are undertaken by

some people, thus suggesting the transport efficiency for enhancing the road network design.

To support efficient visualization of interchange patterns that emerged from massive movement

data, we propose a novel visual representation, namely the interchange circos diagram, for

presenting the redistribution of people at junction nodes. This visual design is adapted from

the circos figure [74], which was invented for examining the mutual relationships between
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genomes. Incorporated with various advices from domain experts, we revise and customize the

circos figure for presenting commuter interchange: a flyover ring to denote the junction node

itself, bi-directional bundling to reduce visual cluttering, and an improved color assignment on

linkages to enhance the visual connections between neighboring interchange circos diagrams.

Our visualization techniques have been applied to real world movement data consisting of

hundred thousands of trajectories, and two case studies on how transport experts applied our

method are also presented.

4.2 Overview

This section first presents a formal definition on interchange patterns, and then overviews our

system workflow.

4.2.1 Formal Definition: Interchange

An interchange pattern at a junction basically describes how moving objects redistribute when

they go through the junction. Given a traffic network modeled as an undirected graph, say G =

(V,E), where V is the set of (junction) nodes in G and E the set of edges connecting neighboring

nodes in V . When a moving object passes through a junction node, say v ∈ V , whose valency

is n, it has n+ 1 possible ways of entering the node. This is because it may come from v’s

n connecting links, or from the dominion of junction v itself; these are the possible sources.

Likewise, there are also n+1 possible ways (sinks) of leaving junction v.

Hence, given the trajectory data, we first can identify a subset of trajectories that go through

each node in V . Then, we can determine the incoming and outgoing links of each trajectory

across a node, and summarize the interchange information at the node as a (n+1)-by-(n+1)

matrix, which counts all the possible routes of going through the node.
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Figure 4.1: The interchange information (ten trajectories) at this junction can be summarized
as a 5-by-5 matrix.

Figure 4.1 shows an example of a junction node with four links and ten trajectories. We can

summarize its interchange statistics as a 5-by-5 interchange matrix. Note that the diagonal

elements in the matrix are all zeros because we assume that no trajectories revert back to the

same link in reality.

4.2.2 System Workflow

Figure 4.2: System workflow: from (a) a set of raw trajectory paths, to (b) traffic networks of
different spatial scales, (c) interchange statistics, (d) interchange circos diagrams per junction
node, and (e) our interchange visualization with user interaction.

Our system workflow consists of the following computational steps, see also Figure 4.2:

• Starting from the raw trajectory paths (Figure 4.2(a)), we first build a traffic network in

the form of a undirected graph. It can be a road-level network (Figure 4.2(b)(bottom)), a
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city-scale network (Figure 4.2(b)(top)), or a series of region-scale networks in-between.

As for the finest-scale network, we can reconstruct it by examining the raw trajectory

paths, while for the coarser networks, we can either reconstruct them by hierarchical

clustering, such as those in [50, 10], or obtain the network structure directly from the

domain experts.

• Then, for each traffic network, we determine per link (between pairs of neighboring

junction nodes) two sets of trajectories (per movement direction along the link) that go

through the link. Next, we partition the total time period covered by the the trajectories

into equal time intervals, say 15 minutes, and precompute an interchange matrix for each

time interval per junction node.

• After the user interactively chooses a period of time over a day, our system can retrieve

and sum up the interchange matrices corresponding to the related time intervals that

made up that time period. By this, we can quickly produce summarized interchange

matrix (Figure 4.2(c)) at any junction upon user request. After that, an interchange circos

diagram is constructed from the matrix and presented in the visualization (Figure 4.2(d)),

see Section 4.3.

• Lastly, our interface supports also a family of visualization and user interaction tech-

niques to explore various aspects of the interchange patterns, see Section 5.4.

4.3 Interchange Circos Diagram

Transport domain experts expect the following information when examining interchange pat-

terns: (1) absolute and relative flow volumes across different pairs of links at a junction, (2)

ratio of total incoming and outgoing flow volumes of each link, (3) flows starting/ending at the

junction itself, (4) flow directions, (5) correspondence to the geographical nature of the data,
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and (6) temporal and spatial variations of the interchange patterns. Hereby, we design a novel

visual representation to capture these features.

This section first presents the idea of the original circos figure, and then develops it into the

interchange circos diagram to present interchange patterns. Then, we present how the inter-

change circos diagram is implemented, and compares it against existing visual representation.

4.3.1 Circos Figures

The circos figure was invented by Krzywinski et al. [74] for examining the mutual relationship

among genomes. After constructing a two-dimensional table of relationships, such as similarity

and difference, among pairs of elements in the genomes, its basic idea is to present the pair-

wise data matrix in a circular ideogram layout with ribbons that connects related elements, see

Figure 4.3 for examples. Other than genome visualization, the circos figure was also adopted

by Bostock et al. [20] for web visualization, and another related visual metaphor that shares

similar characteristics is the contingency wheel [4].

Figure 4.3: Example circos figures developed by Krzywinski et al. [74] for examining the
mutual relationship among genomes.
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Figure 4.4: An initial design of interchange circos diagram with arc elements representing the
exterior links and junction itself, and ribbons connecting arc elements representing the flows.

4.3.2 Initial Design: Interchange Circos Diagram

To develop our interchange circos diagram from circos figures, the very first step is to map the

interchange information to the various visual components in a circos figure. First, we map the

connecting links at a junction node (including the junction itself) as arc elements around the

figure’s boundary, and vary the angular size of these arc elements according to the total flow

volume across the links, see Figure 4.4. Then, we join the arc elements with curved ribbons

and vary the ribbon width to present the flow volume.

Moreover, we sort and render the ribbons from back to front to emphasize the flows with larger

volume, and employ haloes [14, 66] to visually emphasize the occlusions between intersecting

ribbons. Next, we assign a unique color to each arc element (see Section 4.3.4), and specifically

assign grey to indicate the junction itself.

Lastly, since movement is bidirectional, we need two ribbons between every pair of arc ele-

ments. Thus, we highlight the ribbon direction by 1) gradually changing the color along the

ribbon from its source to destination but using the source color as the dominated color, and 2)

putting a ribbon gap (see Figure 4.4) between the ribbon and its destination arc element. Hence,
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we can formulate an initial design of our interchange circos diagram as a visual representation

of the interchange information at a junction, see Figure 4.4.

4.3.3 Improving Our Visual Design

Figure 4.5: Developing the interchange circos diagram from the original circos figure: (a)
the initial design in Figure 4.4; (b) use a grey-colored flyover ring (like a source/sink) for the
junction itself; (c) bundle pairs of bi-directional ribbons to reduce the visual cluttering; and (d)
draw white and black curved statistics boxes to present the total outgoing and incoming flow
volumes.

However, this initial design still has a number of issues:

(i) Visual confusion. Since the original circos figure treats all genome elements equally, it is

thus natural to put the elements around the figure’s circular border. Our case is, however,

different because of a special link, i.e., the junction node itself. Hence, if we just present

this link equally like the external connecting links, they can be mixed up, and potentially

result in a visual confusion.

(ii) Visual cluttering. Second, for a junction node of valence n, we have n(n− 1) ribbons

in total within an interchange circos diagram, e.g., the interchange circos diagram in

Figure 4.5(a) has 20 ribbons. Even though we sort and render the ribbons, and apply

haloes to enhance the visual occlusion, the intersecting ribbons could still be cluttered in

spite of the fact that n is usually 4 or 5.
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(iii) Visual analytics. Lastly, domain experts may want to directly observe basic statistics in

the visual representation, but such information could still be missing, or not straightfor-

ward to be seen, e.g., comparing relative flow volume between bi-directional routes.

Hence we propose the following techniques to further improve our design:

(i) Flyover Ring. To address the first issue above, we isolate the junction node, i.e., the

source and sink of the interchange, from the other connecting links, and use a grey-

colored flyover ring to represent the junction node, see Figure 4.5(b). In this way, we can

avoid the visual confusion issue as well as reduce the number of ribbons.

(ii) Bundling Ribbons. To allow domain experts to visually compare the relative flow vol-

umes between bidirectional ribbons between the same pair of links, we propose to bundle

each pair of bidirectional ribbons together, see Figure 4.5(c). As for the labeled bundle

shown in Figure 4.5(c), we can easily see that the blue-colored ribbon dominates; hence,

there are far more people traveling from the blue to yellow link, than that of the opposite

direction. In addition, this strategy can also help to address the visual cluttering problem

by further reducing the total number of ribbons, e.g., from 20 in our initial design, to just

the six ribbons shown in Figure 4.5(c).

(iii) Statistics on Flow Volume. Lastly, we draw a pair of black and white curved statistics

boxes above each arc element with angular sizes proportional to the flow volumes along

the corresponding link, see Figure 4.5(d). By these statistics boxes, one can quickly

identify the relative flow volume along each link. Note that we use grey to indicate the

outgoing flow and black for the incoming flow, and we may also optionally put in the

actual numbers of the flow volume on the boxes.
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4.3.4 Coloring Arc Elements

Since there are multiple interchange circos diagrams interconnected over the underlying traffic

network, see Figure 4.2(e) or Figure 4.6, we propose to improve the visual connection between

them by coloring their links (and the related arc elements) with the following two constraints:

• First, links connected to a common junction node should have different colors;

• Second, a common link between two neighboring junction nodes should have the same

color.

This indeed is an edge coloring problem of an undirected graph, i.e., the traffic network G.

Rather than using complex combinatorial optimization, since a junction node has at most seven

links (which is a very rare case), we found that it is sufficient to fulfill the above two constraints

by precomputing a small number of distinct colors and then applying a simple algorithm to

assign these colors to the links:

1: Initialize:
2: for each edge in G do
3: ci j = ∅ . ci j is the link color between vertex i & j
4: end for
5: Main Loop:
6: for each edge in G (random order) do
7: Ci = colors previously assigned to links of vertex i
8: C j = colors previously assigned to links of vertex j
9: C = precomputed colors - (Ci∪C j)

10: ci j = randomly choose a color in C
11: end for

If k is the maximum vertex valency in G, the maximum number of neighboring links that any

link would have is 2(k− 1). Hence, precomputing 2k− 1 colors would be sufficient to fulfill

the coloring constraints. In our implementation, we precompute a table of 13 colors (k = 7).

More than a single traffic network, we may have a series of traffic networks of different spatial

scales. In this case, we should also attempt to maintain color coherence for links that exist

44



CHAPTER 4. VISUAL ANALYTICS FOR INTERCHANGE PATTERNS

in networks of consecutive spatial scales. This helps to maintain the visual context when one

explores across spatial scales. To address this, we first apply our color assignment method to

the coarsest-scale network graph, and then progressively color the links in the next finer-scale

graph with an additional constraint:

• Third, if a link exists in two consecutive network graphs of different scales, we should

try to assign a similar color to its two instances.

This is done by first checking if a link exists in the previous coarser graph and retrieving its

color, say c0, from the graph. If we need to enforce the third constraint, we assign c0 to ci j if

c0 is in C (see the main loop in pseudo code above), else we pick a color in C that is the most

similar to c0.

4.3.5 Positioning Arc Elements

When putting interchange circos diagrams that are geographically interconnected with one

another, see again Figure 4.6, we have to scale and shift (angularly) the arc elements in each

interchange circos diagram because of the following two issues. First, we need to scale the

angular size of the arc elements, so that angular sizes can be used to indicate relative flow

volume among links in the visualization. Second, taking the interchange circos diagram at the

bottom of Figure 4.6(a) as an example, we need to shift the blue arc element, so that it roughly

align with the direction toward the related interchange circos diagram on the right.

To address the first issue, we first determine the junction node that has the largest sum of in

and out flow volumes in the current visualization view, e.g., the interchange circos diagram at

the bottom of Figure 4.6(a). Then, we constrain the angle sum of all arc elements around it to

be 180 degrees, and compute the angle size of every arc element in the visualization view by a

simple linear proportionality based on its flow volume. By this simple idea, we can guarantee
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that the angle sum of arc elements around any node is no greater than 180 degrees, and that we

can have sufficient angular space to shift the arc elements to resolve the second issue.

To further resolve the second issue to avoid overlapping the arc elements, every arc element in

the current visualization is initially positioned in a way that it points toward its link direction.

Then, in each interchange diagram, we simply check if any neighboring arc elements are too

close to each other, and make them repel from each other. This is repeated iteratively until

every pair of neighboring arc elements has a minimum gap of 10 degrees from each other.

4.4 Interface: Visualizing Interchange

This section presents our visualization interface: 1) multi-scale visualization of interchange

patterns, and 2) a family of interaction techniques for exploring interchange patterns.

4.4.1 Multi-scale Visualization

As mentioned earlier, interchange patterns can emerge in different spatial scales, see Figure 4.6.

Hence, given the traffic network graphs (of different scales) and the interchange matrices we

precomputed from the raw trajectory data, see Section 4.2.2, we can plot the network graph as-

sociated with the current viewing scale in the visualization interface, and render the interchange

circos diagrams at the visible junction nodes in that network graph.

Therefore, in case of the coarsest level (road level), we show one interchange circos diagram

per road junction, and in case of region/city scales, where each partitioned area is a junction

node, we show one interchange circos diagram per partitioned area and put it at the centroid of

the area to avoid cluttering. See Figure 4.6 for the visualization results.

46



CHAPTER 4. VISUAL ANALYTICS FOR INTERCHANGE PATTERNS

(a)

(b)

(c)

Figure 4.6: Interchange Circos Diagrams in different scales: (a) city scale; (b) regional scale;
and (c) road network scale.

4.4.2 Interaction

Our system offers a family of interaction techniques to let users interactively explore the inter-

change patterns.

• Select. The user can select an interchange circos diagram by click on it. After that, the

related junction/region is highlighted as a visual feedback.

• Zoom. If a series of multi-scale traffic network graphs is available, the user can inter-

actively zoom in/out to examine the interchange patterns in different spatial scale. In

addition, our interface also provides an interactive magnifying glass function for users to

do a focus+context visualization to examine the interchange patterns.

• Roll. In addition, one compelling feature of our interface is that the user can roll out a

series of interchange circos diagram, see Figure 4.8, and observe the temporal changes

of the interchange pattern over time.
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• Time Control. Other than rolling to see temporal changes at a junction node, the user

can also interactively adjust a timer control to filter the trajectory paths against a user-

preferred time interval. By this, the user can animate all interchange circos diagrams in

the visualization view and observe the temporal changes.

4.5 Implementation and Results

This section presents the implementation details of our system, followed by two case studies.

4.5.1 Implementation

This system is implemented entirely in Java, so that it can run on different platforms in the

future. Currently, it runs on an Intel Core i7 2 2GHz MacBook Pro with 8GB memory and an

AMD Radeon HD 6490 graphics board.

Data storage. In the offline precomputation, see again Section 4.2.2, we mainly pre-compute

interchange matrices for each junction node at all traffic network graphs over the partitioned

time intervals. Note that we use 15 minutes as the time interval, so there are 24× 4 = 96

partitioned time intervals over a day. Moreover, since there are about 1,600 junction nodes

in total over all traffic network of different scales, and the interchange matrices are mostly

5×5 on average, the total memory needed to store the precomputed interchange data is around

96×1600×25×4 bytes, i.e. ∼15MB (note: we use 4-byte integers for the matrix elements).

Offline precomputation. Since it is impossible to load the entire raw trajectory data into the

main memory, we divide the raw data into chunks and precompute the interchange matrices,

i.e.,∼15MB data, for each chunk. Since interchange matrices of the same junction node can be

summed, we can aggregate the overall interchange matrices for all raw trajectories by adding

up matrices from the data chunks. It took about 30 minutes to preprocess one data chunk, and

around 10 hours for all 20 data chunks to finish the offline preprocessing.
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4.5.2 Case Study 4-1: Interchange at Metro Stations

Our system has been customized to analyze the interchange patterns at train stations in the

Singapore MRT system, which consists of four metro service lines.

Figure 4.7: Interchange patterns at different train stations (a-d) in the Singapore Metro system.

As shown in Figure 4.7, we can pick a train station and visualize its interchange pattern for

a user-selected time interval, which is 08:00 - 10:00 in this case. By examining these four

interchange circos diagrams, we can see the relative flow volumes for different possible routes

at these train stations, e.g., the major movement directions at each station as well as the relative

flow volumes among the four stations. Since the selected time interval is in the morning, we

can observe unbalanced flow volumes in the bundled ribbons as well as in the node-connecting

links.

By using the “roll” operation, we can roll out a series of interchange circos diagrams, see

Figure 4.8 to examine the temporal variations of interchange patterns at these four train stations.

A common and general pattern shared by all four stations is that the most heavy traffic periods

are the morning and evening peak hours, while there are far fewer commuters during the lunch

hours. Specifically, we could observe the followings in our visualization:

• STATION a (Figure 4.8(a)) is the 2nd last station on XX MRT line. It only has two

connecting links, and there are fewer traveling commuters compared to the other inter-

change stations as presented in the figure. In addition, our visualization can also reveal
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Figure 4.8: Exploring the temporal changes (over a day) in the interchange patterns at four
different train stations (a-d) in the Singapore MRT system.

that during the morning peak hours, almost all commuters who enter this station come

from the east side, and these people are almost equally distributed when they leave this

station: roughly half of them continues their journey to the next station while the other

half goes into the dominion of the station. And when evening comes, the interchange

pattern basically reverses.

• STATION b (Figure 4.8(b)) is a busy interchange station connecting XX and YY MRT

lines. Comparing its temporal variation against that of the other three stations, we can

clearly see that its flow volume is always larger than that of the others. Moreover, com-

muters who enter this station from YY line on the top are (always) nearly equally re-

distributed into the east and west connecting directions on XX line, and XX line is usu-

ally busier than YY line. Lastly, we can also observe asymmetric flow volumes between

the east and west connecting directions in this station during the morning and evening

periods similar to that in STATION a.
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• STATION c (Figure 4.8(c)) is an interchange station between XX and WW MRT lines

with four connecting links. As seen from the figure, XX line basically dominates the

flow in this station. Though relatively fewer commuters on XX line transit to WW line

here, commuters to or from WW line appear to redistribute fairly equally for all different

outgoing routes in this station, showing that the newly-established line, i.e., WW line, is

like a supporting branch with line 1 being the main route.

• STATION d (Figure 4.8(d)) is an interchange station linking ZZ and WW MRT lines. In-

terestingly, we find that the traffic flow volumes across the two lines are nearly the same,

but these two service lines are relatively independent of each other, i.e., relatively not too

many commuters transit between them, as compared to XX and ZZ line commuters in

STATION c.

4.5.3 Case Study 4-2: Intersection Capacity Utilization

The intersection capacity utilization (ICU) method [65] is a standard way in transport research

to measure the utilization rate of a road junction.

Our interface can also be used to estimate ICU at road junctions because one key factor that

affects ICU is the relative amount of incoming and outgoing flow volumes from each direction

at the road junction. Basically, the more balanced the flow volumes at different connecting

links are, the junction will usually have a higher ICU rating.

The left and right hand sides of Figure 4.9 compare lower and higher ICU ratings, respectively,

at a road junction during different time periods. Figure 4.9(a) has a lower ICU rating since the

traffic flows from yellow to violet dominate the junction utilization; moreover, both the orange

and yellow connecting links are highly unbalanced. Figure 4.9(b) has a higher ICU rating

because traffic flows from each direction, as well as the incoming/outgoing flow volumes are
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Figure 4.9: Comparison of lower (left) and higher (right) ICU ratings at a road junction during
different time periods. (a) The traffic flow from yellow to violet dominates the junction utiliza-
tion; moreover, both the orange and yellow connecting links are highly unbalanced. (b) Traffic
flows from different links in the junction are fairly balanced and the incoming/outgoing flows
for each connecting links are also fairly balanced.

relatively more balanced. With our interface, domain experts can efficiently identify potential

road junctions with low ICU rating across different time of the day.

4.6 Discussion

This chapter explores and analyzes interchange patterns emerged from the EZLink data. Inter-

change pattern can be considered as a local aspect of OD pattern, which associates with only

the trajectories passing through a specific position in the transport network. In particular, we

have proposed a novel visual representation, i.e., the interchange circos diagram, to intuitively

and effectively present the pattern.

On contrast, many existing visualization methods represent traffic flows by considering loca-

tions (junction nodes) in a pairwise manner. They aggregate the trajectory flows by computing

only the total flow volume between every pair of neighboring nodes, and present these aggre-
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gated information as (bidirectional) arrows with varying width and color to show the corre-

sponding flow volume. Such approach is intuitive and has been adopted in many applications,

but it is not sufficient to reveal the interchange patterns because the interchange information

has been lost when aggregating data.

Figure 4.10: Comparing interchange circos diagrams with existing visualization approach. (a)
Two sets of raw trajectories; (b) Existing approach aggregates flows between pairs of locations
and draws arrows to indicate the aggregated flow volume; (c) Our interchange circos diagrams
are able to reveal the detail on the interchange patterns.

Figure 4.10 compares interchange circos diagrams with the existing visualization approach.

Here we show two simple examples that contain two and four trajectories, see top and bottom

of Figure 4.10(a), respectively. After the data aggregation, both sets of trajectories result in a

very similar aggregated visualization, see Figure 4.10(b), but in sharp contrast, our interchange

circos diagrams are able to present to us clearly the difference in the interchange patterns

emerged from the two trajectory sets, see Figure 4.10(c).

Scalability of our method. Since our visualization interface works with the precomputed

interchange data, we do not need to load the raw trajectory data in the program run-time.

Hence, it is independent of the amount of raw trajectories. However, it does depend on the

time resolution we choose and the number of junctions we have in the traffic network graph

because they affect the size of the precomputed interchange data.
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Chapter 5

Visual Analytics for
Waypoints-Constrained OD Patterns

Origin-Destination (OD) pattern is a highly useful means for transportation research since it

summarizes urban dynamics and human mobility. However, existing visual analytics are in-

sufficient for certain OD analytical tasks needed in transport research. For example, transport

researchers are interested in path-related movements across congested roads, besides global

patterns over the entire domain. Driven by this need, we propose waypoints-constrained OD

visual analytics, a new approach for exploring path-related OD patterns in an urban transporta-

tion network. First, we use hashing-based query to support interactive filtering of trajectories

through user-specified waypoints. Second, we elaborate a set of design principles and rules,

and derive a novel unified visual representation called the waypoints-constrained OD view by

carefully considering the OD flow presentation, the temporal variation, spatial layout, and user

interaction, etc. Finally, we demonstrate the effectiveness of our interface with two case studies

and expert interviews with five transportation experts.
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5.1 Introduction

Origin-Destination (OD) pattern is a fundamental concept in transportation, summarizing peo-

ple and vehicle movements across geographical regions [129]. Studies show that analyzing

OD patterns can facilitate the understanding of urban dynamics and human activities, e.g., esti-

mating region functionality [146], revealing urban structure [68], and studying congested road

usage [132].

As such, OD pattern has been an important topic in the study of transportation and urban plan-

ning. However, visualizing OD patterns has always been challenging. First, considering real

transportation data with numerous locations and passenger trajectories, huge amount of OD

pairs could be easily produced. As a result, the visualization will likely end up with visual

clutter if we simply employ conventional visualization methods like flow map. Second, re-

cent research by Wang et al. [132] shows that only a few (less than 2%) of the road segments

in urban areas give rise to congestion. This motivates transportation researchers to study OD

patterns subject to specific locations/paths rather than to the entire city. However, existing vi-

sual analytic methods generally focus on global OD flows across regions and ignore OD flows

constrained along specific locations/paths. Moreover, city-scale OD patterns can be highly

complex. That is, the traffic condition in a city could have huge spatial and temporal varia-

tions, e.g., peak versus non-peak hours, busy versus deserted roads, etc. Lastly, transportation

researchers are concerned with not only the OD flow volumes, but also the movement paths of

the OD flows.

To address the above spatial-, temporal- and path-related requirements, we design a new visual

analytics approach, namely waypoints-constrained OD visual analytics, aiming to help users

analyze OD patterns associated with trajectories that successively pass through specific links or

waypoints in the transportation network. This approach could help transportation researchers

in transportation planning and traffic management, e.g., in a situation where some subway
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(a)

(b) (c)

In-flow View Out-flow ViewOD-flow Temporal View

Figure 5.1: Overview of our waypoints-constrained OD visual analytics interface. We can
interactively (a) select and modify the entry (red) and exit (blue) waypoints in the transportation
network, (b) filter passenger trajectories that successively pass through the selected waypoints,
and (c) present the waypoints-constrained OD view to support the analytical tasks.

routes are disrupted, service providers can identify closely-connected origins and destinations

and provide emergency bus services for commuting the passengers.

Our approach is achieved through an iterative design process. First, we set forth the require-

ments and analytical tasks in collaboration with the transportation researchers. Second, we

elaborate a set of design principles and rules, and carefully consider the OD flow presentation,

the temporal variation, spatial layout, and user interaction, etc. when designing the waypoints-

constrained OD view. Third, we use a hashing-based query method to support interactive fil-

tering with over ∼2.1 millions of daily passenger trajectories. Lastly, to demonstrate how our

visual analytics interface helps to study and explore the Singapore public transportation data,

we present two case studies and conduct an expert review with five transportation researchers.

5.2 Overview

Transportation Data. The data we employed is from the Singapore Mass Rapid Transit (MRT)

system, which is a metro system consisting of about 2.1 million daily passenger trips. In Sin-

gapore, passengers carry personalized RFID cards to enter and leave the public transportation

system by tapping their own RFID cards on the card readers available in the stations. The card

readers can automatically record various trip information such as card ID, tap-in time, tap-out
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time, related stops, etc. From this raw data, one can reconstruct the passenger trajectory path

with time stamps over intermediate stops for every trip record [38].

Basic Concepts. The public transportation network can be represented as a directed graph G

:= (V , E), where V is a set of nodes in G and E is a set of directed edges connecting neighboring

accessible nodes (locations). Hence, a trajectory T is a sequence of consecutive directed edges

in G:

T := v1→ v2→ ...→ vm,

where vi∈V and 2≤ m≤ |V |. Moreover, we have a timestamp ti at each vi along trajectory

T . The waypoints-constrained OD pattern associates with trajectories that successively pass

through two user-specified waypoints in the transportation network: the entry waypoint node,

which receives passengers coming from different origins, and the exit waypoint node, which

sends passengers to their destinations. As a convention, we represent the entry and exit way-

point nodes as red and blue glyphs, respectively, see Figure 6.1(a) & (b).

Analytical Tasks. In our collaboration with transportation researchers, we identified a family

of analytical tasks. First, our interface should support interactive filtering of trajectories, say

{T}, that successively pass through the user-specified entry and exit waypoints for a given time

period. Then, the interface should present spatial- and temporal-related information to support

the following basic tasks:

• T5-1: Find the origins and destinations from {T};

• T5-2: Examine and compare the flow volumes among the OD pairs derived from {T};

and

• T5-3: Examine and compare the temporal changes in flow volumes among the OD pairs.

Besides, they would also like to perform some path-related tasks specifically for OD patterns

in urban traffic data:
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Figure 5.2: Interactive waypoints specification: a) mode 1: two successive clicks to select an
entry and then an exit waypoint; b) mode 2: drag to define a path from the entry waypoint
to exit waypoint; c) mode 3: click to select an entry waypoint and an outgoing direction (red
arrow); and d) click to select and then drag to modify an existing waypoint.

• T5-4: Present the paths through which the trajectories go from origins to destinations; in

some situations, we may have multiple paths between the entry and exit waypoints.

System Overview. Figure 6.1 shows the workflow. First, the user interactively manipulates

the entry and exit waypoints by simply clicking and dragging the red and blue glyphs in the

network (Figure 6.1(a)). Upon changes in waypoint locations or user-specified time period,

the interface automatically filters and queries relevant trajectories from millions of daily tra-

jectories, and presents a map view of the retrieved trajectories in a split second (Figure 6.1(b)).

Then, the user can bring in the waypoints-constrained OD view (Figure 6.1(c)) to explore not

only the spatial and temporal semantics of the OD patterns, but also the path-related informa-

tion. Note that this waypoints-constrained OD view has three main components: in-flow view,

OD-flow temporal view, and out-flow view, see Section 5.4 for detail. These components work

together to support the analytical tasks above.
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5.3 Waypoints-Constrained OD Query

5.3.1 Interactive Waypoints Specification

To construct a visual query, users can interactively specify and manipulate the (entry and exit)

waypoints by simple mouse click and drag with the following three modes:

Mode 1: two successive mouse clicks to select an entry waypoint and then an exit waypoint,

say A and D in Figure 5.2(a). Our interface then applies the query method in Section 5.3.2 to

retrieve all relevant trajectories through A and then D by considering all possible time-efficient

paths from A to D, i.e., A→ B→ D and A→C→ D.

Mode 2: click to select an entry waypoint (A) and then drag along the network to define a

path (ABD), see Figure 5.2(b). The node at which the mouse button is released defines the exit

waypoint (D), and we consider only the trajectories along the dragged path A→ B→D but not

A→C→ D.

Mode 3: long-press to select a common entry and exit waypoint, say A in Figure 5.2(c). The

interface then shows all outgoing (blue) arrows emerged from A. In this mode, the user can

select different outgoing directions from A and explore the OD patterns of trajectories along

different directions from the same junction node.

Once the waypoints are specified, the user can interactively modify them on the map, see Fig-

ure 5.2(d). In case the entry and exit waypoints become coincident, the query mode smoothly

changes from mode 1/2 to mode 3, and vice versa.

5.3.2 Hashing-Based Trajectory Query

To support such interactive query, we need to efficiently filter out relevant trajectories against

a given time period (4t). Rather than scanning through the nodes along every trajectory in the
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data, we use a hashing-based method. First, we attach a unique ID (tid) to each trajectory, and

define 72 equal time intervals from 6 A.M. till midnight, each covering 15 min. The choice of

this interval size is driven by a common practice by transportation researchers: when modeling

and analyzing transport data, they normally set a minimum analysis time interval, which should

not be too short, so that there are sufficient samples in each interval, and should not be too long

to avoid losing the details. Altogether, there are two stages in the query method:

Indexing Scheme (offline). First, for each edge e := <vi, v j> in G, we record per time interval

a list of tid of trajectories that pass through e. A trajectory T is said to pass through e within

4t if T’s [ti, t j] overlaps 4t, where ti and t j are time at which T passes through vi and v j of e,

respectively.

Second, we build a hash table for each node v in G, where the hash key is a tid and the hash

value is the corresponding time at which the trajectory passes through v. Since hashing can be

done in O(1) time, we can quickly check if a given trajectory (tid) passes through v, and if this

is the case, we can also obtain the related timestamp (tv).

Trajectory Query (online). Given entry waypoint A, exit waypoint D, and time interval 4t,

our interface performs the following two steps to extract the relevant trajectories.

In the first step, our goal is to determine a set of candidate trajectories (i.e., a list of tid′s), say

SA, that exit from A within 4t. After identifying A’s outgoing edges that are relevant to the

query, we retrieve and combine the lists of precomputed tid′s through each edge for the 15-min.

time interval(s) covered by4t. Note that if4t covers more than one 15-min. time interval, we

have to remove duplicated tid′s when combining the precomputed lists since some trajectories

may appear in two consecutive time intervals. It is because when a passenger travels through

a link (edge) in the transport network, he/she may start the travel within a certain time interval

and end it within the next time interval.
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(a) (b) (c)

Figure 5.3: The map view overviews the waypoints-constrained trajectories: a) an origin; b)
red and blue glyphs as entry and exit waypoints, resp.; and c) a destination.

In the second step, our goal is to filter the trajectories in SA, and output those that pass through

D within 4t. Here we employ the precomputed hash tables for speedup. In detail, we first

retrieve the hash table at exit waypoint D, and use it to remove the trajectories (in SA) that do

not pass through D, or pass through D but outside 4t (by the hash value). In case of mode 2,

we need to perform this test for every intermediate node along the user-selected path from A to

D.

After these tests, the remaining trajectories are the query result for constructing the OD flows.

Note also that in case of mode 3 (with same entry and exit waypoints), we can skip the second

step and output SA as the result.

5.3.3 Map View

After the query, we present a map view (Figure 5.3) to overview the amount of retrieved trajec-

tories over different segments in the transportation network. This map view provides intuitive
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(a) In-Flow View (b) OD-Flow Temporal View (c) Out-Flow View

WW Line 

XX Line 

YY Line 

ZZ Line 

Figure 5.4: An example waypoints-constrained OD view with three components: (a) in-flow
view, (b) OD-flow temporal view, and (c) out-flow view, as an integrated and coordinated
solution to support the visual analytical tasks.

spatial information essential for locating the origins and destinations in the physical space (Task

T5-1).

This map view is created by hardware rendering. First, we randomly jitter the position of

each trajectory by a few pixels and render each of them with low transparency, so the resulting

plotting effect can roughly reveal the flow volume. Note also that we follow the Singapore

MRT (metro) coloring scheme to color different parts of the trajectories, e.g., green for WW

line and red for XX line.

Besides, the map view also presents: Entry and Exit Waypoints as red and blue glyphs, respec-

tively, on the map, see Figure 5.3(b). Origins and Destinations as hollow circles positioned

at their locations with radii revealing the corresponding flow volume, see the hollow circles in

Figure 5.3(a) & (c).

5.4 Waypoints-Constrained OD View

In this section, we first discuss the design philosophy behind our interface. Then, we elabo-

rate the three component views in the waypoints-constrained OD view, and discuss alternative

designs. Lastly, we present the layout algorithm and user interaction we developed in the in-

terface.
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5.4.1 Design Philosophy

By the map view, we can present aggregated flow volumes across origins and destinations, and

support analytical task T5-1. However, it is clear that the map view alone is insufficient for

other tasks: T5-2 to T5-4, e.g., Figure 5.3 does not allow us to examine and compare flow

volumes among different OD pairs from WW28 (Figure 5.3(a)), so it cannot handle T5-2.

This calls for a new visualization design to address tasks T5-2 to T5-4. In particular, we aim

to depict the OD pairs (T5-2), the temporal-related information (T5-3), and the path-related in-

formation (T5-4) in an integrated and coordinated fashion. This is a very challenging problem:

i) visual clutter could easily occur given excessive OD pairs; ii) integrating temporal-related

information of OD pairs in the visualization could further increase the visual clutter; and iii) it

is nontrivial to also support the tracing of flow paths from origins to destinations. To address

these challenges, we identify the following principles as guidance of our design:

• Overview+Detail. The visualization should support an overview of the OD patterns,

e.g., appropriately summarizing the origins and destinations, in order to address the vi-

sual clutter issue when presenting the OD pairs. Certain interactive exploration should

also be incorporated in the design to allow users to further analyze the OD patterns with

controllable amount of details on demand.

• Visual Correlation with Transport Semantics. The visualization should reveal the

semantics of the transport network to promote the correlation between elements in the

visualization and the actual objects they represent, e.g., MRT stations and lines. Since

the visualization has to include OD pairs, temporal- and path-related information, we

cannot directly put the design on the map view.

• Intuitive Spatial Layout. The spatial layout in the visualization should be intuitive

for users to explore the origins, the destinations, and the OD flows in-between them.
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WW Line

XX Line

Figure 5.5: An example in-flow view: vertical boxes show the origins with heights to indicate
flow volumes, and ribbons to show flow aggregation before the entry waypoint.

Furthermore, the spatial layout should facilitate intuitive user interaction needed by the

users.

By considering the above design principles, we formulate a novel visual design, namely the

waypoints-constrained OD view with three component views: in-flow, OD-flow temporal, and

out-flow views (Figure 5.4(a-c)). In particular, we establish the following convention rules to

meet the “visual correlation” and “spatial layout” principles:

First, we separate the three component views by two vertical bars (Figure 5.4) that represent the

entry and exit waypoints: origins on the left (in-flow view), destinations on the right (in-flow

view), whereas the connections between OD pairs are in the middle (OD-flow temporal view).

Hence, this integrated design can naturally present the OD flows, which generally go from left

to right. Second, the vertical dimension in the three component views always indicates the

flow volume. Third, we always try to use the standard Singapore MRT coloring scheme for

the visual elements in the visualization since this helps reveal the semantics of the transport

network, e.g., green for the WW line, red for the XX line, purple for the YY line, yellow for

the ZZ line, etc.
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a

a
b

c

c
Total Volume

b

translucent

opaque

Figure 5.6: An example OD-flow temporal view that presents the OD patterns for the tra-
jectories shown in Figure 5.3: (a) the two vertical bars represent the origin waypoint (left)
and destination waypoint (right), and the colored boxes along the two bars represent the corre-
sponding origins and destinations, respectively, (b) ribbons connect the origin and destination
boxes and show the OD flow volumes in-between the corresponding OD pairs with embedded
heat maps to reveal flow volume variation over time, and (c) relative (average) travel distance
of each OD pair. Note also that the heat maps are colored by the color bar on top, e.g., the
rightmost deep red is used for flow volume in range (216,720], etc.

5.4.2 The In-Flow and Out-Flow Views

These two views are designed for users to effectively compare flow volumes of different sta-

tions (part of Task T5-1) and visualize the paths from origins to destinations (Task T5-4).

First, origins and destinations are presented as solid rectangular boxes; their colors follow the

Singapore MRT coloring scheme, e.g., the green and red boxes in Figure 5.5, while their heights

indicate the associated flow volume. Second, the horizontal axis in both views (Figure 5.5

(bottom)) indicate the travel time from origins to entry waypoint (in-flow view), or from exit

waypoint to destinations (out-flow view). So, we can easily observe and compare the travel
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time between different origins/destinations and the two waypoints. Third, we adopt the Sankey

flow diagram to connect the boxes and their associated waypoint with smooth ribbons whose

heights indicate the (aggregated) flow volume.

From the in-flow view in Figure 5.5, we can see that stations WW23 and WW27 contribute

the most in terms of flow volume to entry waypoint WW22. Besides, flows from the XX line

merge into the green WW line at station WW24/XX1, indicating that passengers from the XX

line transfer to WW line at WW24/XX1. Here, different portions of height vertically along

station WW24/XX1 reveal the aggregated flow volumes from the XX line, from the WW line

(WW25 to WW29), and from WW24/XX1 itself. Note that in Singapore, interchange stations

connecting multiple MRT lines compose of multiple IDs, e.g., WW24/XX1 is the 24th station

along the WW line and 1st station along the XX line.

5.4.3 The OD-Flow Temporal View

The OD-flow temporal view (Figure 5.6) is designed to support Task T5-2 & Task T5-3 with

the following visual elements:

(i) Origins and Destinations. The two long vertical bars represent the entry and exit way-

points (Figure 5.6(a)) and contain boxes that represent the origins and destinations. These

boxes can be manipulated by users for “overview+detail” exploration, i.e., users can

overview the OD flows by aggregating the origin/destination boxes, or explore their de-

tails by decomposing them, see Section 5.4.6. Note also that we group the boxes by MRT

lines and sort them by the method in Section 5.4.5.

(ii) OD-Pair Flow. To address Task T5-2, we use smooth ribbons (Figure 5.6(b)) to connect

the origin and destination nodes (boxes) to show the flows for each OD pair over the given

time period shown on the bottom of the view. Here, we emphasize the OD flows with
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larger flow volumes by rendering the ribbons from back to front in ascending order of

flow volumes, and we add halos around the ribbon boundaries to help reveal the layering.

(iii) Temporal Variation of OD-Pair Flow. To address Task T5-3, we adopt a heat map vi-

sualization on each ribbon to present the associated temporal variation of flow volume

over the given time period. In detail, we horizontally divide each ribbon into column

segments, each corresponding to a 15-min. time interval along the horizontal time axis

on the bottom. Each column segment is then colored based on the color map shown on

top of the view.

We consider two mechanisms to render overlapping ribbons in the OD-flow temporal

view. By default, we employ translucency to blend these ribbons since this approach can

preserve the visual connection and continuity of ribbons, enhancing the tracing of ribbons

on the back layers. Other than that, users can optionally make the ribbons opaque, so

that interested ribbons can be highlighted, e.g., the front-most ribbons in Figure 5.6.

(iv) OD-Pair Travel Time/Distance. Optionally, users can examine and compare the relative

(average) travel time/distance among the OD pairs by looking at the gray segments at the

ends of the ribbons near the two vertical bars. For the case shown in Figure 5.6(c), the

gray segments show the travel distance of the OD pairs, see also the time/distance scale

mark on top of the view for facilitating the visual examination and comparison.

(v) Multiple Inter-Waypoints Paths. In some situations, we could have multiple time-efficient

paths in between the entry and exit waypoints, e.g., the two green paths in Figure 5.2(a).

In this case, we put in additional vertical boxes in the middle of the OD-flow tempo-

ral view to bundle the OD flows across different time-efficient paths (see the green and

purple bars in the middle of Figure 5.9(a & b)). This complements the in- and out-flow

views to help users explore the path details.
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06:00 - 06:15 08:00 - 08:15 10:00 - 10:15

16:00 - 16:15 18:00 -18:15 20:00 - 20:15

Figure 5.7: Design alternative: small multiples that show flow volume difference over six
different time periods with the same entry and exit waypoints as in Figure 5.4. The individual
diagrams are too small to present useful information.

Figure 5.6 shows an example OD-flow temporal view for the trajectories that pass through

the entry waypoint (station WW24/XX1) and the exit waypoint (station WW23) during the

time period 6:00 to 24:00. The origin WW stations (Figure 5.6(a) left) are aggregated as one

single group, while the destination WW stations (Figure 5.6(a) right) are disaggregated as

twelve single stations and one sub-group. The visualization here shows that there is slightly

higher incoming flows originated from the WW stations than from the XX stations, and most

trajectories end at WW stations. Moreover, we can observe the morning and evening peak

patterns by looking at the heat maps embedded on the ribbons.

5.4.4 Discussion: Design Alternatives

This subsection discusses design alternatives for T5-2 to T5-4:

To support task T5-2, which focuses on flow volumes among OD pairs, we connect origins and

destinations with Sankey-style ribbons (Figure 5.4(b)). Such a design allows for hierarchical

clustering of nodes with different details, thus promoting the “overview+detail” principle, yet

most existing OD visualization methods do not exhibit this flexibility.
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To support task T5-3, which focuses on temporal changes of flow volumes, we embed heat

maps along the ribbons in the OD-flow temporal view (Figure 5.4(b)). Heat map is a widely-

accepted and well-recognized method for depicting variations of data over time, and has been

applied and proven to be efficient in visualizing temporal OD data [22].

Typical alternative designs are small multiples and animations. Small multiples can be con-

structed by putting together multiple OD-flow temporal views, each for a different time inter-

val, see Figure 5.7. However, due to the small size of individual views, it is difficult to examine

and compare flow volumes of OD pairs across different time periods. For instance, we can

intuitively observe morning and evening peak flows in Figure 5.4(b) (with 72 time periods) but

not in Figure 5.7 (with only six periods, when occupying a similar size as Figure 5.4(b) in the

paper). On the other hand, animations have been shown to be useful in some cases, but they

are not effective for supporting statistical analysis [103].

To support task T5-4, i.e., to present the paths through which the trajectories go from origins to

destinations, our visualization adopts Sankey-style ribbons to support quantitative flow tracing

across trajectory paths [101], see Figure 5.4(a & c).

Existing OD visualizations can be summarized into three categories based on the amount of

path-related information they present: i) absent flow paths, e.g., OD matrix visualizations with-

out any intermediate location [51, 142]; ii) discontinuous flow paths, e.g., flow maps with

arrows connecting neighboring locations [50, 10]; iii) flow paths that are continuous but not

existing in reality, e.g., bundled flow maps [98, 127]. None of these methods can support well

the flow tracing from multiple origins to multiple destinations. Compared to these methods, our

in-flow and out-flow views, which integrate with the OD-flow temporal view, can intuitively

reveal how the flows aggregate before reaching the entry waypoint and how the flows distribute

after leaving the exit waypoint.
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(a) (b)Figure 5.8: Illustration: effects of ordering origin and destination boxes by flow volumes (left)
and by overlapping minimization (right) in the OD-flow temporal view.

5.4.5 Ordering of Origin/Destination Boxes

The readability of the OD-flow temporal view (see again Figure 5.6) is highly affected by the

visual clutter among the ribbons. This problem is commonly found in node-link graphs, where

several edge crossings reduction algorithms [59, 33] have been proposed to reduce the visual

clutter by repositioning the nodes. Here, we adopt the randomized method in [126] to reorder

the origin and destination boxes on the left and right vertical bars, but instead of reducing

the number of edge crossings, we aim to minimize the overlapping area among the ribbons

since the ribbons in our visualization are much wider than the edges in conventional node-link

graphs.

In detail, our heuristic method starts by ordering the origin and destination boxes in ascending

order of flow volumes, see Figure 5.8(left). Then, we randomly shuffle the boxes on each

vertical bar until the total overlapping area cannot be further reduced. Lastly, we select the

solution with least total overlapping area. Note also that we keep the grouping of origin and

destination boxes based on MRT lines, so the re-ordering is applied only among groups or

nodes with the same parent in the hierarchy. Figure 5.8(right) presents a typical result, showing

that the total overlapping area (dark gray) can be effectively reduced by our method.
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5.4.6 User Interaction

Furthermore, we offer a set of user interaction methods to facilitate “overview+detail” explo-

ration of OD patterns apart from waypoints specification and time period selection:

Aggregate/Disaggregate the origins/destinations that belong to the same group, e.g., the same

MRT service line. This allows users to interactively control the number (and details) of OD

pairs to be displayed and to explore the OD pairs at different levels of detail on demand.

Filter the origins/destinations and their corresponding OD-pairs, enabling users to remove less

interested OD pairs and concentrate on the remaining OD flows.

Highlight the OD pairs by selecting and emphasizing interested ribbons. This action brings

the selected ribbons forward in the layering order and makes their colors opaque (see the front-

most ribbons in Figure 5.6(b)).

5.5 Evaluation and Discussion

5.5.1 Performance Evaluation: Trajectory Query

We evaluated the performance of the hashing-based trajectory query method on a PC with

a dual Intel(R) Xeon(R) E5-1650 CPU and 16 GB memory, and used the Singapore MRT

transport data with two million passenger trajectories on a typical working day. The trajectories

contain 8.3 stops on average from origin to destination, so the whole data contains around 16.5

million trajectory nodes in total.

In this experiment, we compare the performance of our method against a simple method that

sequentially looks through all the nodes along each trajectory to find out the trajectories that

pass through the two waypoints within a given query time period. Here, we randomly picked

10%, 50%, and 100% of the trajectories from the whole data set to form three data sets, and
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performed three tests on each of them with different query time periods: 15-min., 1-hour,

and 24-hour, respectively. In each test, we randomly generate 5,000 pairs of entry and exit

waypoints and record the query time for each pair. We obtained the following results:

• The query time of both methods increase (apparently linear) with the number of trajec-

tories in the data set, but only our method is affected by the length of the query time

period. The performance of our method is also affected by the entry waypoint and the

query time: it takes longer query time with a busy entry waypoint (with numerous tra-

jectories) or with peak hours.

• In the worst case (100% trajectories and 24-hour query time period), our method fin-

ishes in ∼45.3 millisec. on average, while the simple method needs ∼8.23 sec. Note

that this performance is necessary to support interactive query of trajectories when users

manipulate the entry and exit waypoints or change the query time period.

5.5.2 Study 1: Transportation Network Usage Analysis

In study 1, we aim to analyze and explore flows among OD pairs, temporal- and path-related

network usage, which are mainly related to tasks T5-2, T5-3 and T5-4, respectively.

Here, we specify two time periods, 06:00-10:00 (Figure 5.9(a)) and 16:00-20:00 (Figure 5.9(b)),

to compare the network usage for the same pair of waypoints: MRT stations WW16/YY3 and

ZZ1/YY6/XX24. There are two time-efficient paths in-between them: the green (WW) and

purple (YY) paths, see the map view in Figure 5.9(c). Correspondingly, we put two vertical

boxes in the middle of the two visualizations to represent the two paths (or branches).

To address task T5-2 in this case study, we highlight and compare the ribbons of two different

OD-pair flows in Figure 5.9(a & b): one starts from WW27 while the other starts from YY1,

and both end at the XX line, see Figure 5.9(d & e). From Figure 5.9(a), we can see that WW27
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(a)

(b)

(c)

(d)

(e)

(e)

(d)

YY1

WW27

YY1

WW27

Figure 5.9: Case study 1: transportation network usage analysis. (a) & (b) present the morning
and evening OD-flow temporal views, respectively, for the same pair of waypoints shown in
the map view (c). Highlighted ribbon (d) shows that trajectories leaving WW27 station for
XX-line stations (red) always pass through the WW branch (green) instead of the YY branch
(purple) (note: they are two different time-efficient paths between the waypoints, see again
the map view), while (e) shows that trajectories transferred from YY1 station to XX stations
always pass through the YY branch.

73



CHAPTER 5. VISUAL ANALYTICS FOR WAYPOINTS-CONSTRAINED OD PATTERNS

contributes a slightly larger flow volume to stations in the XX line than YY1 in the morning;

while from Figure 5.9(b), we can see that the ribbon from YY1 to XX line becomes much

wider than that from WW27 to XX line, indicating more people coming from YY1 to XX line

in the evening.

Our visualization can also support task T5-3. At a glimpse, we can see that Figure 5.9(a)

contains less red colors, indicating less flows through the two waypoints in the morning than in

the evening. Second, when further examining the two figures, we can see that the colors around

08:00 in Figure 5.9(a) and around 18:30 in Figure 5.9(b) are more dark red than others. This

reveals 08:00 as the morning peak time and 18:30 as the evening peak time for flows across the

selected waypoints. Moreover, looking at the height of YY1 in Figure 5.9(b) (bottom left), we

can see that it has more flows as compared to other origin stations. This may be due to the fact

that YY1 is a popular shopping area near Sentosa in Singapore; more people return home from

YY1 in the evening.

Path-related information can also be explored in our visualizations for supporting task T5-4.

From Figure 5.9, we can find that people choose the intermediate paths (WW or YY) mainly

depending on their origins and destinations. Taking the flows from WW27 to XX stations as

an example, i.e., Figure 5.9(d), almost all passengers chose the WW path instead of the YY

path, but they chose the YY path if their destinations in the YY stations. Lastly, Figure 5.9(b)

also shows that there are relatively more flows through the YY line than the WW line in the

evening, and most of these flows either start from YY1 or end at the stations in the YY line.

5.5.3 Study 2: Daily Pendulum Movements Exploration

In transportation, pendulum movements describe an obligatory urban mobility pattern that is

highly predictable and recurring on a regular basis [104]: Employees who commute from

residential to working areas contribute to the A.M. peak flow; when they return home, they

74



CHAPTER 5. VISUAL ANALYTICS FOR WAYPOINTS-CONSTRAINED OD PATTERNS

(a)

(b)

(c)

Ribbon 1

Ribbon 2

Ribbon 1 (mirrored)

Ribbon 2 (mirrored)

Figure 5.10: Case study 2: daily pendulum movement exploration. (a) & (b) present an in-
teresting pendulum movement pattern, which illustrates home-to-work movements through the
red arrow in (c) in the morning (06:00-10:00), and work-to-home movements through the blue
arrow in (c) in the evening (16:00-20:00).
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contribute to the P.M. peak flow. By analyzing this pattern, researchers can effectively measure

the distribution of residential and business regions [84]. Thus, exploring pendulum movements

is highly valuable for transportation planning.

The pendulum movement pattern is mainly related to analytical task T5-1, since we need to

determine the locations of the origins and destinations, and then check whether they swap roles

in the morning and evening periods. In this study, we explore the daily pendulum movement

patterns in the Singapore MRT data on a normal working day.

Here, we first specify stations WW24/XX1 and WW23 as the entry and exit waypoints (red ar-

row in Figure 5.10(c)) and produce the waypoints-constrained OD view for the morning period

06:00-10:00 (Figure 5.10(a)). After that, we swap the role of the two waypoints (blue arrow in

Figure 5.10(c)) and produce another view for the evening period 16:00-20:00 (Figure 5.10(b)).

By comparing Figure 5.10(a & b), we can observe interesting pendulum movement patterns.

First, both views identify nearly the same set of origins and destinations but with swapped

roles. In the morning, WW and XX stations generate similar amount of flows, indicating that

the areas around both sets of stations have similar residential population. Moreover, most of

these flows end at four specific stations, see the blue circle in Figure 5.10(a), indicating that

these stations mostly locate in business areas as compared to others. Furthermore, while in the

evening, most of the flows from the four stations (see the red circle in Figure 5.10(b)) have

similar flow volumes, mirroring the flows in the morning, suggesting that most people follow

reversed routes to return home, so these flows mostly end at WW and XX stations with similar

flow volumes.

Second, flow volumes between the same OD pairs in A.M. & P.M. with reversed directions are

almost the same. Taking the highlighted ribbons connecting XX-line to WW23 (Ribbon 1 in

Figure 5.10(a)) and WW-line to WW23 (Ribbon 2 in Figure 5.10(a)) as examples, we can find

similar flow volumes for each ribbon as compared to its mirrored counterpart in Figure 5.10(b).
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This further shows that most employees return home from workplace through reversed routes.

It would be interesting to explore whether such a pattern also happen in other big cities such as

London and New York.

5.5.4 Expert Interview

We conducted expert interviews with five transportation experts: two senior researchers with

15+ years of research experience (denoted as SR1 & SR2) and three junior researchers with

less experience (denoted as R1, R2 & R3). Since this research work is conducted through a

transdisciplinary research programme (Future Cities Laboratory), which comprises computer

scientists, transportation researchers, architects, etc., the first author can easily reach out to

transportation researchers in the institute. Here, SR1 is one of the co-author of this paper while

the other experts are independent researchers from the institute.

In the expert interview, we started with a few questions to identify their background and ex-

plained our interface design and visual encodings. We then showed the two case studies and

asked for their feedbacks. Each interview lasted for 1 to 1.5 hours, and their feedbacks are

summarized as follows.

Visual design and interactions. In general, all experts agreed that our visual analytics in-

terface is nicely designed, and supports the analytical tasks well. They especially liked the

OD-flow temporal view since it can help to reveal both the OD flows over the whole time

period as well as in a specific time interval. Normally, they employ conventional flow maps

that connect origins and destinations when studying OD patterns. They pointed out that the

conventional flow map could easily cause visual clutter with that many OD pairs and that they

have to produce many views to compare the ODs at different time periods. SR2 said “I never

thought one single view can clearly present the OD flows and their temporal variations.” SR1

specially appreciated the order of OD-pair ribbons with larger volumes in front, as “in general,

OD pairs with larger volumes are more interesting” to them.
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The experts also acknowledged the usefulness of the in- and out-flow views as visual aids for

exploring the trajectory paths. R3 commented the views: “intuitively demonstrate the passen-

gers accumulate and spread along the network.” SR1 & R3 pointed out that being able to

observe the travel time from each origin/destination to the entry/exit waypoint is very useful,

as it reveals passenger’s preference regarding travel time. “There must be something behind if

many passengers need to travel long times,” said SR1.

The experts appreciated the interactions offered by our interface. There can be easily hun-

dreds of OD pairs in OD analysis. Being able to filter unimportant and highlight important

information “would greatly facilitate my analysis,” said R2. The experts also liked the aggre-

gate/disaggregate interactions, which can reduce the number of OD pairs, allowing them to

explore particular ODs on their demand.

Suggestions. The experts gave some fruitful comments to improve our interface. They men-

tioned that we can provide more spatial information in the waypoints-constrained OD view,

such as a dimmed map on the background. SR1 & SR2 also hoped that our system would

support some in-depth analysis of some mobility information. For example, they would like to

explore if passenger travel distances follow the power-law distribution [25], yet our visualiza-

tion can only present relative (average) travel distances among the OD pairs. The experts also

had some concerns about adopting our interface to more complex subway systems, which do

not come with a simple color coding scheme. Nevertheless, they agreed if we can pre-define

subway line colors and do some training, the users would get used to our system.

5.5.5 Discussion

In this work, we explored waypoints-constrained OD patterns of passenger flows in the Singa-

pore MRT network. Case study 1 demonstrated that our visualization can effectively present

OD-pair flows, temporal- and path-related information, with respect to analytical tasks T5-2,
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T5-3, and T5-4, and case study 2 showed that our design can also support well analytical task

T5-1. The expert feedbacks further commented the effectiveness of our visual analytic system.

We believe that our system can be adopted to visualize OD patterns of movement data in

more complex networks: For example, in a general case, we can hierarchically partition the

geographical space into regions based on administrations or methods like [50, 10], and explore

OD flows in-between these regions. The experts also highlighted that geographical partitioning

method could be aligned with their traditional OD analysis.

The OD-flow temporal view depicts large amount of information, yet the design may fail when

given excessive quantity of OD pairs. Due to the number of resulting ribbon crossings, explor-

ing OD patterns with more than forty OD pairs altogether (without hierarchical grouping) is

not recommended. Nevertheless, our visualization design is suitable for waypoints-constrained

OD pattern analysis for two reasons. First, according to previous study [132], the number of

origins and destinations that are interested to transportation researchers is limited in most sit-

uations. Second, we adopt the “overview+ detail” principle, allowing users to interactively

control and manipulate OD pairs being presented. Most existing OD visualization methods,

e.g. Flowstrates [22], do not offer this feasibility.

Not being able to preserve more spatial context can be considered as a limitation of our ap-

proach. However, this is a common problem for methods that visualize arbitrary OD flows [7].

To mitigate the spatial information loss, we offer the in-flow and out-flow views to facilitate

the exploration of trajectory paths.
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Chapter 6

Visual Analytics for PTS Mobility

Due to their increasing complexity of PTS, designing effective methods to visualize and ex-

plore PTS is highly challenging. Most existing techniques employ network visualization meth-

ods and focus on showing the network topology across stops while ignoring various mobility-

related factors such as riding time, transfer time, waiting time, and round-the-clock patterns.

The work in this chapter aims to visualize and explore commuter mobility in a PTS with a

family of analytical tasks based on inputs from transport researchers. After exploring different

design alternatives, we come up with an integrated solution with three visualization modules:

isochrone map view for geographical information, isotime flow map view for effective temporal

information comparison and manipulation, and OD-pair journey view for detailed visual analy-

sis of mobility factors along routes between specific origin-destination pairs. The isotime flow

map linearizes a flow map into a parallel isoline representation, maximizing the visualization

of mobility information along the horizontal time axis while presenting clear and smooth path-

ways from origin to destinations. Moreover, we devise several interactive visual query methods

for users to easily explore the dynamics of PTS mobility over space and time. Lastly, we also

construct a PTS mobility model from millions of real commuter trajectories, and evaluate our

visualization techniques with assorted case studies with the transport researchers.
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6.1 Introduction

Studying the efficiency of a PTS is highly beneficial to both individuals as well as to the entire

city as a whole. Thanks to recent availability of various forms of public transport data, includ-

ing the commuter journey data collected via RFID cards, transit schedule data, and transport

network data, we now can study and explore the efficiency of a PTS by modeling and integrat-

ing these real-world data rather than relying on simulations. By then, we can further design

and develop visual analytics methods to explore these data and serve the transport researchers

and urban planners. In particular, this chapter focuses on exploring and visualizing commuter

mobility in a PTS, e.g., how fast commuters can travel by PTS, which is a highly crucial factor

that impacts the overall PTS efficiency.

However, developing visual analytics methods to meet this goal is a highly challenging task

due to the following issues:

• First, public transport systems are increasingly complex to meet the population growth,

e.g., metropolises like London and New York have 270 underground stations and 460

subway stations, respectively, offering more than a billion commuter trips per year. If

we also consider buses and other transport modes, the PTS network would be overly

complex for exploration and analysis. This motivates us to study PTS mobility mod-

els [99, 67] from the transport research community to analyze routes started from a com-

mon origin in a complex network.

• Second, existing works in visualizing public transport networks mostly employ network

visualization methods and focus on presenting the network topology across stops. They

ignore various mobility-related factors, e.g., riding time, transfer time, waiting time, etc.,

that affect the PTS efficiency. Hence, novel methods have to be developed to meet the

needs of exploring and analyzing these factors.
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• Lastly, the mobility-related factors to be explored are not static. They vary dynamically

with both time and space, and could also exhibit round-the-clock patterns. Hence, spatio-

temporal visualization strategies have to be considered to maximize the visual analytics

capability of a method.

To address the above issues, we present in this chapter a visual analytics framework to visu-

alize and explore mobility-related factors in a public transport system with three visualization

modules:

• isochrone map view, which presents geographical regions accessible from a given start-

ing location within certain duration;

• isotime flow map view, a novel strategy that linearizes a flow map in a parallel isotime

fashion, enabling visualization and exploration of various mobility-related factors; and

• OD-pair journey view, which enables interactive exploration of various mobility-related

factors, and their temporal variations, along the origin-destination journeys.

To develop the above visualization modules, we first analyzed the problem with the help of

two transport researchers, and identified the related analytical tasks (Section 6.2). Then, we

constructed a PTS mobility model from different pieces of real data including transport net-

work data and commuter RFID card data with several million trips (Section 6.3). After that,

we developed the three visualization modules mentioned above, and refined their visual de-

signs with the transport researchers (Sections 6.4.1 to 6.4.3). During the design phase, we

also implemented and explored different design alternatives for presenting mobility-related

factors (Section 6.4.4). Lastly, to evaluate our visual analytics framework, we explored two

case studies with transport researchers who are currently working on public transport planning

and management, and also presented expert feedbacks received from two transport researchers

(Section 6.5).
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6.2 Overview

In this section, we first present the problem definition. After that, we describe the related

analytical tasks, the mobility-related factors, and the input data set, and then give an overview

of the system workflow.

6.2.1 Problem Definition

In land-use and public transport planning, transport researchers would like to explore the level

of connections, or the travel efficiency, from a particular location to other parts of the city, given

the existing land use and transport network. By this, they can quickly identify which part(s) of

the city is/are less developed, find out what facilities are lacking, and explore inefficient usage

of public transport resources. This problem is also related to optimal routes algorithms [99, 67]

in transport research, where transport researchers study routes starting from a common origin

to different points of interests in the city.

This is a collaborative work with two transport researchers specialized in public transport sys-

tems. Based on their inputs, the following visualization problem is defined:

• Input: an origin A in the given public transport network, starting time t0, and a certain

time duration T ;

• Output: a set of destinations B (and related travel routes) that are reachable from A at t0

within T ; and

• Goal: we aim to present and explore mobility-related factors (see Section 6.2.2) associ-

ated with the travel routes from A to B.
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6.2.2 Analytical Tasks and Mobility-Related Factors

To address the problem, here are the basic analytical tasks that our visual analytics interface

should support:

• Task 6-1: Given the input information A, t0 and T , extract and present all reachable

destinations B;

• Task 6-2: Present clear pathways/routes from A to B; and

• Task 6-3: Examine and compare the travel time and travel efficiency of the routes from

A to B.

The above basic tasks focus on presenting and exploring routes starting from A at a given time

t0. Additionally, we would need to allow the users to select specific destination nodes, say

Bi ∈ B, and then:

• Task 6-4: Present detailed path information from A to Bi, i.e., various mobility-related

factors, see below for details; and

• Task 6-5: Examine the mobility-related factors and their round-the-clock pattern, i.e.,

their temporal variations over a day.

In particular, the following mobility-related factors are considered:

• Waiting time at a bus stop or subway platform for a route service;

• Riding time on a vehicle for traveling between two stops;

• Transfer time for walking between neighboring stops; and

• Travel efficiency measures the efficiency of traveling between a specific pair of origin

and destination relative to the average efficiency (speed) of travel in the PTS.
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The above analytical tasks and mobility-related factors are the baseline requirements for our

visual design to be presented in Section 6.4.

6.2.3 System Workflow

VISUAL EXPLORATION AND ANALYSISDATA PREPROCESSING

Passenger RFID
Card Data

Transportation
Network

Transit Line
Schedule

Transfer 
Time

Riding 
Time

Travel
Efficiency

Mobility-Related 
Factors

Select Origin 
and Time

PTS Mobility 
Model

Time-Efficient 
Journeys

Isochrone Map View

Isotime Flow Map View

Waiting 
Time

OD-pair Journey View

Figure 6.1: Overview of our system workflow. In the data preprocessing stage, we integrate the
input data to estimate various mobility-related factors. These information are then presented
in the visual exploration and analysis stage, which comprises three visualization modules: (i)
isochrone map view, (ii) isotime flow map view, and (iii) OD-pair journey view, which com-
plement one another and work together to support various analytical tasks.

The workflow of our visual analytics framework is illustrated in Figure 6.1. It has two ma-

jor phases: The data preprocessing phase loads and integrates various input data, estimates

mobility-related factors over space and time, and constructs the PTS mobility model, see Sec-

tion 6.3. To support near real-time determination of routes from a given origin A to destinations

B, we index the mobility-related factors on stops and transit routes. Note that this preprocess-
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ing phase is a one-time offline process, after which we store the precomputed information on

hard disk, and load them in the next phase.

The visual exploration and analysis phase starts with our main interface with three modules:

isochrone map view (Section 6.4.1), isotime flow map view (Section 6.4.2), and OD-pair jour-

ney view (Section 6.4.3), which complement one another and work together to present the

mobility-related factors and support the various analytical tasks.

6.3 Modeling PTS Mobility

In this section, we first describe the PTS mobility model employed, and then present the data

preprocessing stage, which focuses on estimating the mobility-related factors from the input

data.

6.3.1 PTS Mobility Model

In reality, public transport stops are usually not the origin or destination of a commuter journey;

one often needs an initial walk, say from home/office/shop to a public transport stop, before

the PTS trips and transfers, as well as a final walk to reach the destination. Since we have no

data about the initial and final walks, we consider commuter journeys to start and end at stops

in the public transport network.

One key factor that affects how commuters plan their journeys is travel time, which is also a

crucial factor that affects the overall efficiency of a public transport system. Hence, we choose

to construct a PTS model [99, 67] that focuses on time-efficient journeys. In detail, we model

a commuter journey with n trips and n-1 transfers, so the overall travel time of the journey is

modeled as
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Tjourney =
n

∑
i=1

T i
trip +

n−1

∑
i=1

T i
trans, n≥ 1 ,

where T i
trip is the travel time for the ith trip, and T i

trans is the transfer time between the ith and

(i+1)th trips. Since waiting time is often needed before boarding a vehicle, e.g., train and bus,

we further divide T i
trip into waiting time T i

wait and riding time T i
ride:

Tjourney =
n

∑
i=1

[
T i

wait +T i
ride

]
+

n−1

∑
i=1

T i
trans, n≥ 1 .

6.3.2 Estimating Mobility-Related Factors

In the data preprocessing stage, we first clean the raw commuter trip data by removing in-

complete and erroneous data records, e.g., some commuters went out of buses without tap-out,

some commuters stayed exceptional long inside the metro system compared to normal travel

time needed to go between their tap-in and tap-out stations, etc.

Since mobility-related factors are time-varying, it is not feasible to estimate their continuous

changes over time even with millions of commuter trip records. Hence, we divide the temporal

dimension into seventy-two 15-minute time bins from 6am to midnight, which is the normal

PTS operating period of a day. Then, we integrate various input data, and estimate the average

value of each mobility-related factor (per stop or stop connection) per time bin. Note also

that since commuter tap-in and tap-out mechanisms are slightly different for buses and metro

services, we may need to consider bus and metro independently when estimating the mobility-

related factors. Moreover, we assume that metro services always follow the transit line schedule

while bus services may not (due to road sharing and local traffic).

Waiting Time is a per transit route, per stop and per time bin quantity. To estimate it for bus

services, we extract all bus trips from the RFID card data. For each stop of each bus transit
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route, we first compute the average time over all tap-in tap-out times at the same stop of the

same bus to estimate when the bus stays at each stop, say t i
bus. Hence, we can obtain all t i

bus

for all bus services (same transit route) at a given stop over the day, and then compute the time

interval between successive t i
bus to estimate the bus frequency (interval) at each stop per bus

line per time bin; half of such a value is the expected waiting time.

For MRT services, though transit line schedule data is accurate, actual waiting time may some-

times be longer than the time interval between successive trains since during the peak hours,

commuters may not be able to board a train immediately after reaching the MRT platform.

Hence, we estimate MRT waiting time as follows. First, we extract all MRT trips without

MRT-to-MRT transfer since having a transfer could bias the computation below. Then, for

each trip, we extract the tap-in time, and search for the next train that the commuter should

have boarded at the tap-in station. By this, we can look up the transit line schedule to obtain

the riding time required for him/her to reach the destination station, and estimate the related

waiting time as: ( tap-out time - tap-in time ) - scheduled riding time. Since we can obtain

multiple waiting time from different commuter records, we further compute their average as

the expected waiting time.

Riding Time is a per successive stops (along the service route) and per time bin quantity. For

bus services, after we estimate t i
bus at the stops of each bus line (see above), we can estimate the

riding time of each bus between successive stops of the same bus. Again, we average multiple

instances of such a value to obtain the expected riding time per successive stops and per time

bin. For MRT services, we obtain riding time simply by looking up the transit line schedule.

Transfer Time. There are three cases of transfer: First, it is from MRT to MRT. If the transfer

happens between nearby platforms, we assume zero transfer time. However, in some cases,

one may have to walk a fairly long distance from one platform to another. Since there are no

card tapping activities during the transfer, we estimate transfer time by taking advantage of the
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data massive-ness: 1) extract all MRT journeys with only one transfer; 2) estimate the transfer

time of the journey as: ( tap-out time - tap-in time ) - ( T 1
wait + T 1

ride + T 2
ride ); and 3) again,

average the results from different journeys per time bin.

The second case is from bus/MRT to bus. If the two bus stops are the same (same reference

ID), we assume zero transfer time. Otherwise, we need a walk to the next bus stop, so we

estimate the transfer time as tap-in time (next bus) - tap-out time (prev. bus) - wait time (next

bus). Note that MRT to bus is slightly different from bus to bus since it requires a walk from

MRT platform to the tap-out gate. However, since we have no information about such a walk,

we ignore it and estimate transfer time in the same manner as bus to bus.

The last case is from bus to MRT, where we estimate the transfer time as tap-in time (MRT ) -

tap-out time (bus).

Travel Efficiency differs from the general concept of speed since it considers also waiting and

transfer time in addition to riding time. Moreover, it describes the relative efficiency of travel

along a specific route as compared to the mean mobility of the entire PTS network.

Before computing the travel efficiency of a specific route, we first determine the mean mobility

of the entire PTS by: 1) compute the mobility of each commuter journey in the RFID data

as: total journey distance divided by Tjourney; and 2) compute the mean mobility µ and also its

standard deviation σ over all the journeys. By this, the travel efficiency of a given route (started

at a given time) is obtained by normalizing its mobility value against µ and σ .

6.4 Visualization Design

In this section, we describe how we support the analytical tasks defined in Section 6.2.2 through

the following three visualization modules:
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6.4.1 Isochrone Map View

For Task 6-1, our goal is to extract and present all reachable locations B given A, t0, and T . To

handle it, we first compute time-efficient journeys from A to every single stop in the PTS using

the estimated mobility-related factors. This is done by a real-time breadth-first-like mecha-

nism (single-source shortest time-efficient paths) that iteratively identifies and expands time-

reachable stops (nodes in the network graph) over the geographical map before T is reached.

Figure 6.2: The isochrone map view presents spatial-reachability regions from 08:00 at origin
A (red icon), which is station XX16/WW3 in the city center, by contour lines and areas over the
geographical map. Dark blue and light blue indicate [0,30] and (30,60] minutes, respectively.

In addition, at every reachable stop (including A), we consider “commuter walk” from the

stop by using the remaining journey time at the stop within T , and assume a constant walking

speed of 5km/h without encountering obstacles like buildings and roads. Hence, every stop

will be surrounded by a circular region; we further union all these regions to determine time-

reachable regions on the map (note: such union is done by rendering without tedious geometric

computation). After that, we can plot the related contour lines and areas, see Figure 6.2 for an

example with a city center location as A. Here we use a red icon on the map to show the
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location of A, and highlight the contour regions in blue: dark blue for [0,30] min., light blue

for (30,60] min., and white for >60 min. Moreover, we present in gray the set of all reachable

edges, which is a subset of the entire PTS network, and adjust their line width to reveal the

amount of time-efficient journeys that pass through each edge. By this, main branches can be

emphasized.

6.4.2 Isotime Flow Map View

To handle Tasks 6-2 & 6-3, i.e., to present clear routes from A to B and to examine and compare

their travel efficiencies, the isochrone map view alone is insufficient. If we apply colors to B in

this view to show the travel efficiency, the colors we employed would easily mess up with the

isochrone colors. Moreover, it is hard to present clear pathways for examining and comparing

time-efficient journeys in the isochrone map view, particularly with numerous pathways from

A to B.

Hence, handling Tasks 6-2 & 6-3 is non-trivial, so we first explore different design alternatives

in a pilot study, see Section 6.4.4 for detail. After comparing these alternatives, we propose

the isotime flow map view, which is a novel visualization strategy, that presents a flow map

visualization in a parallel isotime fashion, see Figure 6.3 for an example. The followings detail

its construction procedure:

(i) Parallel isotime model. First, we arrange a horizontal timeline on the bottom of the view

to show the journey time from t0 and t0+T (left to right). In this view, A is the red dot on

the left while all destinations and nodes to B (in fact, all visual elements) are tagged with

time. Thus, we can quickly look at the horizontal coordinate of any visual element w.r.t.

the time axis to find out the related journey time from A. To further facilitate such visual

examination and comparison, we draw an array of vertical gray lines in the background

of the view to show different amount of time intervals.
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Figure 6.3: The example isotime flow map view above shows time-efficient journeys started
from the city center station XX16/WW3 at 08:00 within a duration T of one hour. These
journeys are arranged in a parallel isotime fashion with corresponding travel time and travel
efficiency revealed by the horizontal time axis and color code on nodes (see the color map on
the right), respectively.

(ii) Tree structure. To present time-efficient journeys from A to B, rather than showing

them one by one, we present them as a tree structure, which is a subgraph of the entire

PTS rooted at A. Such tree is constructed it by examining the journeys and identifying

branch nodes (transfer stops) and leaf nodes among the journeys. Here we also count the

number of time-efficient journeys (as a weight factor) that go through each branch node.

(iii) Spatial layout. To present the time-efficiency journeys as a tree structure, we take the

flow map visualization approach and layout the tree according to the parallel isotime

model. Hence, the horizontal coordinates of all the nodes in the tree are fixed according

to the related journey time from A, see Figure 6.3, and so, our main task in this step is

to determine the vertical coordinates of all the nodes in the tree. As for this, we devise

the following recursive method, which helps to avoid visual clutter and promote tree

92



CHAPTER 6. VISUAL ANALYTICS FOR PTS MOBILITY
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Figure 6.4: Left: A tree structure that includes all time-efficient journeys from starting node A.
Right: the result of applying our spatial layout algorithm to arrange the nodes in the visualiza-
tion view.

balancing:

• Given A, we first extract all child branch nodes of A.

• To improve the tree balancing, we sort these branch nodes as follows: Given k

nodes, we first find out the node with the highest weight factor and assign it as n1;

the node with the 2nd highest weight as nk; the node with the 3rd highest weight as

n2; then as nk−1, etc. Let wi be the corresponding weight of node ni.

• Then, we divide the vertical range from A into sub-ranges according to wi. See

Figure 6.4(right): node B2 with the highest weight on the top, B3 with the 2nd

highest weight on the bottom, etc.

• Lastly, we repeat the above procedure for each child branch nodes of A till reaching

the leaf nodes.

Figure 6.5: Left: up-and-down wobbling. Right: we fix it by vertically shifting the nodes by
node-based moving-window averaging.
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Note also that to reduce up-and-down wobbling along consecutive branches, see Fig-

ure 6.5, we use simple node-based moving-window averaging to slightly shift the vertical

position of the nodes.

A

B1

B2

A

B1

B2
B2'

Figure 6.6: Branch routing. Left: branches overlap issue may occur. Right: we resolve it by
horizontally shifting the Bézier control points.

(iv) Branch routing. After positioning all the nodes in the view, we next construct a Bézier

curve to connect the nodes to form clear and smooth pathways. However, neighboring

branches may overlap, see Figure 6.6(a). To resolve this issue, we examine Bézier curves

among sibling branches; if an overlap occurs, we horizontally shift the related Bézier

control points, see Figure 6.6(b).

(v) Node color and label. Lastly, we color code each node according to its travel efficiency

(see Section 6.3.2), and put text labels (name or stop reference ID) at nodes whose

on-screen radius is larger than 5 pixels in a up-down-up-down-etc. along consecutive

branches.

6.4.3 OD-pair Journey View

Tasks 6-4 & 6-5 focus on supporting visual analysis of mobility-related factors along specific

routes from A. Clearly, if we color-code all flow lines in the isotime flow map view and present

also their temporal variation, visual clutter would likely happen. Hence, we allow the users to

click-and-select destination node(s) in the isotime flow map view, and then perform Tasks 6-4
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(a) OD-pair Journey View (b) Mobility Wheel

Figure 6.7: The OD-pair journey view focuses on Tasks 6-4 & 6-5, presenting detailed
mobility-related information along routes from A to user-specified nodes (left), as well as their
round-the-clock variations using our proposed visual representation: mobility wheel (right).
Note also that we employ the standard colors of Singapore MRT lines to show the riding time
on MRT, and encode bus lines by yellow.

& 6-5 through the OD-pair journey view, which is an overlay on the isotime flow map view,

see Figure 6.7:

• To support Task 6-4, we need to present detailed mobility-related information in the par-

allel isotime flow map: 1) we widen to highlight the branches along the user-selected

route(s); 2) we color-code different portions of the flow line(s) to show the related

mobility-related conditions: light blue for waiting, gray for transfer, standard colors of

Singapore MRT lines for MRT riding (e.g., green for XX line), and yellow for bus riding;

and 3) we highlight the starting, transfer, and ending nodes in red, gray, and dark blue,

respectively, and label them with corresponding reference IDs/names.

Figure 6.7(a) shows two user-selected routes: both routes have similar initial waiting

time in XX16/ZZ3 station, but have different waiting times at their transfer nodes. For

the journey to NS7 station on top, though it has no transfer time (nearby MRT platforms),

it has much longer waiting time than the other route.

• To support Task 6-5, we design a visual cue called the mobility wheel, which is inspired
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by [83, 123], to show round-the-clock temporal variation of mobility-related factors, see

Figure 6.7(b). Our key idea here is to stack the mobility-related factors as small vertical

bars, and then pack them in a time bin by time bin fashion around the mobility wheel.

By this, we can visualize round-the-clock variation of all contributing mobility-related

factors altogether.

In detail, we put a mobility wheel at each user-selected destination when the OD-pair

journey view is brought up, see again Figure 6.7(b). In addition, we use the same color

coding scheme for showing the mobility-related factors as in Task 6-4, and highlight the

current time bin (according to the main visualization) in the wheel by a thin red rectangle.

The radius of the mobility wheels remain 200×200 on screen, so the user can zoom in

and separate out overlapping wheels if wheel overlap occurs; moreover, the user may

also click on a wheel to bring it to the top layer.

6.4.4 Design Alternatives

(b)(a)

Original Time-scaled

Figure 6.8: Designs alternative that we have explored for handling Tasks 6-2 & 6-3: (a) time-
scaled network distortion and (b) radial isotime layout.

As discussed earlier in Section 6.4.2, when we design the isotime flow map view to handle

Tasks 6-2 & 6-3, we explore different design alternatives to present the flow map and time-

efficiency journeys from A to B. This section presents how we devise and implement these
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alternative designs, and compare them with the parallel isotime layout we have chosen. Below

are the two design alternatives we explored:

(i) Time-scaled network distortion deforms the 2D map, so that distances between points

on the deformed map relate to travel time [1], see Figure 6.8(a). This method was

popularly used in transport to show travel time between locations, and some meth-

ods [112, 16, 113] have been proposed to perform the deformation.

In this work, we develop the time-scaled network distortion by a breadth-first visit from

A: immediate child nodes of A are shifted to reflect their travel time from A, and we

recursively repeat this for the branch nodes until the leaf nodes in the tree structure.

The first problem of this approach concerns with the complexity of the PTS network.

When we consider many time-efficient journeys from A in the transport network, severe

visual clutter would easily occur. Hence, this approach cannot present clear pathways

from A to the reachable stops B (against Task 6-2). Second, it is difficult to accurately

compare the travel efficiency of different routes in the visualization (against Task 6-3)

even though we know that the total length of the (zigzag) routes relate to travel efficiency,

see again Figure 6.8(a). To the best of our knowledge, none of the existing time-scaled

method can handle these two issues.

(ii) Radial isotime layout. Besides the parallel isotime layout, we implemented and ex-

plored another layout alternative: a radial layout, see Figure 6.8(b). It can be constructed

in a way similar to the parallel isotime layout, but it positions A at the center, and B on

concentric circles with increasing travel time along radial direction from A.

Comparing with the parallel isotime layout, radial layout can still present clear path-

ways from A to the reachable stops, but after we show this early design to the trans-

port researchers, several negative feedbacks were received from them: First, concerning

Task 6-3, it is not intuitive for them to examine and compare the travel time as routes
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and mobility-related information are arranged in a radial fashion. According to Heer et

al. [57], encoding time progress from left to right along the horizontal axis can aid com-

parison of time-series events and their trends. Second, the radial layout cannot make full

use of the screen space as the aspect ratio of common displays, e.g., 16:9. Lastly, in the

parallel isotime layout, we can drag the horizontal time axis to left/right to intuitively

modify the current time of the visualization, i.e., t0, but for radial isotime layout, such an

operation is not intuitive.

6.5 Evaluation

This section presents 1) two case studies on exploring PTS mobility with our interface and 2)

feedback from transport researchers.

6.5.1 Case Study 6-1: Spatial Variation of PTS Mobility

In land-use and transport planning, researchers and urban planners are interested in exploring

the travel efficiency from a selected location to other parts of the city, as in Tasks 6-1 & 6-3.

By the visual analysis, they can know what is lacking and also how to improve.

In this case study, we demonstrate how our system facilitates the exploration of PTS mobil-

ity over different locations in a city. Figure 6.9 and Figure 6.10 present the isochrone map

views and isotime flow map views related to two different locations on the map: (a) an MRT

station and (b) a rural-area bus stop. Though the starting time for both visualizations is 8am,

the isochrone map views reveal very different sizes of reachable dominions from the two loca-

tions. In fact, the starting location for Figure 6.9 is an interchange MRT station, which is the

(XX24/YY1) station in Singapore, with two MRT service lines and a bus terminal nearby. With

rapid MRT services, commuters can reach very long distances from this location within a short
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a b

Figure 6.9: Case Study 6-1(a): Exploring the spatial variation of PTS mobility from MRT
station “XX24/YY1” at 08:00 in the morning.
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a b

Figure 6.10: Case Study 6-1(b): Exploring the spatial variation of PTS mobility from a rural-
area bus stop at 08:00 in the morning.
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period of time. In contrast, the starting location for Figure 6.10 is a rural-area bus stop with

only two bus lines available. From the isochrone map view on the right, we can clearly see

the reachable regions along the two major directions from the bus stop corresponding to the

two available buses. Moreover, the bus service line towards the south-east direction relates to

more time-efficient journeys since its line width is wider than the other direction from that bus

stop. Besides, the node colors in the isotime flow map view also confirm that the local travel

efficiency here is very low, as compared to that in Figure 6.9.

6.5.2 Case Study 6-2: Analyzing Mobility-Related Factors

(a) (b) (c)

Figure 6.11: Case Study 6-2: Analyzing detailed mobility-related factors along two different
user-specified journeys starting from MRT station “XX24/YY1” to destinations Bus stop 67852
and MRT station “WW13/ZZ12.” (a) Estimated waiting, riding and transfer time can be clearly
presented along the pathways; we can see together the related MRT and bus trips, as well as
the transfer points. (b & c) show the zoomed views of the mobility wheels in (a) for presenting
the round-the-clock mobility patterns.

Our interface can also allow users to analyze and compare various mobility-related factors that

affect the PTS efficiency, as in Tasks 6-4 & 6-5. Figure 6.11(a) presents two user-selected

routes from the source location MRT station XX24/YY1 to destinations Bus stop 67852 and

MRT station WW13/ZZ12: the red and blue icons on the isochrone map in Figure 6.9 show

their geographical locations, respectively.

From the isochrone map view, we can see that the physical travel distance from XX24/YY1

to WW13/ZZ12 is much longer than XX24/YY1 to Bus stop 67852. However, Figure 6.11(a)
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clearly shows that their travel time are almost the same with a difference of just a few minutes.

To understand how this happens, we can refer to the detailed mobility information shown along

the two selected routes in Figure 6.11(a). Here we can find that the main overhead of traveling

to Bus stop 67852 is the riding time spent in the bus trip (yellow segment in the figure) since

the bus is relatively slow.

We can further explore the temporal variation of the mobility-related factors using the mobil-

ity wheels shown in Figure 6.11(a), see also their zoomed views in Figure 6.11(b & c). In

Figure 6.11 (b), we can find huge variations of travel time over a day, with three peaks that

correspond to the morning peak hour, evening peak hour, and late night period. The interesting

observation here is that riding time in late night period does not vary too much, similar to that

of the non-peak hours, but the related waiting time suddenly increases. This finding is also

confirmed by the local transport agency since both bus and train service frequencies are halved

after 22:30.

On the other hand, the travel time from XX24/YY1 to WW13/ZZ12 shows much less variations

compared to the other route. Figure 6.11(c) also reveals that the MRT services (green and

purple) are relatively more stable over time as compared to the bus services (yellow) shown

in Figure 6.11(b). Concerning the peak hours in the morning and evening, the local transport

agency told us that the MRT service frequency is doubled during these periods, so waiting time

could be reduced. However, the visualizations here show that the waiting time during these

peak hours are actually longer than that of the normal periods because commuters may not be

able to board a train immediately after reaching the platform during peak periods.

6.5.3 Experts Interview

We interviewed two transport researchers who specialized in public transport systems, and

obtained their feedbacks of our interface. One of them is from university E (Expert A), while

102



CHAPTER 6. VISUAL ANALYTICS FOR PTS MOBILITY

another from a Singapore PTS agency (Expert B). In detail, we first explained to them our

system workflow and visual encoding, and then demonstrated to them the two case studies we

presented above. They both thought that our interface can be a useful tool for planners and

operational managers. Their feedbacks are summarized as follows.

Interactive Visual Design. Both of them were impressed by the visual design, especially the

isotime flow map view. Expert B commented “It is an excellent idea to display the information

of a public transport system in multiple presentation formats under an integrated and interac-

tive manner. Differing the visualization based on the nature of the information item of major

concern would greatly enhance the users’ understanding.” Expert A added “the isotime flow

map view makes it very easy to identify the time-shortest routes to all destinations that can be

reached within a certain travel time threshold, and parallel isotime model makes it easy for him

to compare the travel time and efficiency.”

Both experts appreciated the idea of exploring the PTS mobility. Expert A specifically recog-

nized that the choices to select destinations and visualize the detailed mobility-related factors

are very useful. He is particularly interested in visualizing transfer information in our inter-

face, as they are strongly negatively perceived travel elements. Expert B pointed out that the

ability to switch between different views can greatly enhance users’ understanding of the major

information.

Improvements. Both reviewers gave several fruitful comments to improve our system, in-

cluding providing more visual encoding options for users to select and adding more icons for

users to recognize the nodes. Expert A suggested that it might make sense to indicate level of

commuter capacity or actual commuter numbers along pathways, instead of showing the num-

ber of time-efficient journeys currently in our isotime flow map view. He also recommended

us to “show icons or pictograms indicating nearby landmark buildings next to the stops in the

isotime flow map view to help user localize the various branches and identify which facilities
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can be reached.” Expert B further pointed out that the multiple presentation formats could be

explored to emphasize many transport factors, like the boarding and alighting patterns at stops.

Applicability. Expert A also commented: “the tool is highly suitable to support location choice

decision processes such as the choice of residence or place for setting up a business.” As shown

in Case Study 1, the system allows users to evaluate different location options by comparing

the ease of traveling with public transport from one to many places. If land use data is also

included, it could be extended to be a very powerful tool for site selection in real estate industry.

An application example might be that the user would pre-select in what type of places of

interest she/he is interested in and the tool would generate an overview of how easy it is to get

to various location options.

6.6 Discussion

The case studies demonstrate the applicability of our interface in showing mobility of a PTS.

Our current model extracts mobility-related information from massive amount of commuter

RFID card data, enabling transport researchers to analyze the efficiency of a PTS based on real

data rather than simulations. However, PTS efficiency is affected by many dynamic factors

that pose difficulties for transport researchers to recognize and compare. Hence, our inter-

active method presents various mobility-related factors in an intuitive visualization, allowing

researchers to evaluate and compare travel efficiency, as well as to analyze round-the-clock

variations and patterns of these factors. Moreover, transport experts can explore the relative

travel efficiency of a PTS, and apply the results to land-use and transport planning. Further-

more, such results can also help commuters to make better travel planning through the PTS.

Limitations. First, our current approach assumes no train interruption, so that we can use the

MRT transit line schedule data to estimate the mobility factors. Second, we ignore the initial
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and final walks taken by the commuters to and from the PTS stops in estimating the mobility

factors. Third, our method lacks global perspectives on the transport data, e.g., congestion pat-

terns that affect certain areas of the PTS at certain times, which is an interesting aggregation

condition to be explored. Fourth, our current method focuses on one source to many destina-

tions (one-to-many) rather than many sources to many destinations (many-to-many), which is

in fact a very challenging problem. Thanks for the reviewer comment that suggests a global

overview to browse through possible origins, we will explore and study about it. Lastly, cur-

rently we only consider how fast people move, and ignore other factors that affect people’s

choice, e.g., comfort-ness, cost, etc.
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Chapter 7

Conclusion and Future Work

This chapter concludes the thesis, followed by a brief summary of the achievements made and

thoughts for future work.

7.1 Conclusion

This thesis has been devoted to developing intuitive and informative visual analytics to depict

the knowledge emerged from the input massive urban public transport data. The ultimate goal

is to facilitate transport researchers’ exploration and analysis of the data, such that to help

them manage the traffic flow and improve the PTS design. In particular, three visual analytics

systems have been developed, and they are presented in each of the following chapters:

Chapter 4: Visual Analytics for Interchange Patterns

This chapter presents a novel method of visualizing and exploring interchange patterns ex-

tracted from the input dataset. First, we present a formal definition of interchange pattern,

which can be described as an interchange matrix that summarizes flow volumes of different

possible routes across a junction node. After that, we derive from the circos figure a new visual

representation, namely interchange circos diagram, to present interchange patterns. Several

practical issues to reduce visual cluttering and to improve the visual analytic capability have
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been considered to formulate this design, e.g., bundling bidirectional ribbons and designing

statistics boxes to summarize flow volumes. Further than that, we also enhance the visual

connection between neighboring diagrams and develop a working interface to present multiple

interchange circos diagrams supported with a family of interactions. Lastly, we present two

case studies to discuss how our interface can be used to study interchange patterns in the MRT

system, and to examine intersection capacity utilization at junction nodes.

Chapter 5: Visual Analytics for Waypoints-Constrained OD Patterns

This chapter studies a local aspect of OD patterns, i.e., waypoints-constrained OD patterns

that associates with the trajectories passing through a specific path in a public transport net-

work. The problem is motivated by real-world practical needs, e.g., traffic congestions happen

only in specific roads [132]. We develop a novel visual analytics approach, namely waypoints-

constrained OD visual analytics, to explore and analyze the patterns. First, we model the

problem with a pair of user-specified entry and exit waypoints, which can be interactively ma-

nipulated in a transport network. Through these waypoints, we can visually explore the OD

patterns for the trajectories that successively pass through them. Second, we devise an efficient

hashing-based query method to perform real-time waypoints-constrained trajectory filtering.

Third, we develop the waypoints-constrained OD view to present the spatial-, temporal- and

path-related information of the OD patterns. Lastly, we perform two case studies on the EZLink

data, and conduct an interview with several transport researchers to examine our visual analyt-

ics method.

Chapter 6: Visual Analytics for PTS Mobility

This chapter visualizes and explores commuter mobility in a PTS. After we define the problem

and the analytical tasks, we then introduce and construct a PTS mobility model that character-

izes the commuter mobility, and derive methods to estimate various mobility-related factors, in-

cluding waiting time, riding time, transfer time and travel efficiency, from the EZLink data. Our

107



CHAPTER 7. CONCLUSION AND FUTURE WORK

visual analytic interface is an integrated solution with three visualization modules: isochrone

map view, isotime flow map view, and OD-pair journey view, enabling us to efficiently perform

the analytical tasks concerning time-efficient journeys originated from a given starting loca-

tion. Particularly, the isotime flow map view is a novel visualization strategy, which linearizes

a flow map in a parallel isotime layout, thereby presenting clear and smooth pathways from the

given origin to destinations as well as maximizing the visualization and comparison of various

mobility-related factors along the routes. To come up with this design, we also explore and

compare two other design alternatives. In the end, we also explore two case studies with the

transport researchers, and present their expert feedbacks on the interface design.

Besides, Chapter 2 presents an overview of state-of-the-art visualization and analysis tech-

niques in the scope of this thesis. Chapter 3 presents a detailed description of the input dataset,

including its characteristics and examples of its applications in transport domain.

7.2 Contributions

The thesis has demonstrated the usefulness of information visualization reference model [28] in

developing effective visual analytics. The reference model suggests the framework of success-

fully developing information visualization: identifying the user tasks, extracting knowledge

from data, mapping the knowledge to visual structures, and constructing the views from the

visual structures. By closely following the model, we have successfully developed three visual

analytics to address transportation researchers’ tasks. Besides, the thesis also demonstrated

the effectiveness of visual analytics in data exploration process: With appropriately designed

visual analytics, domain experts can progressively refine and evaluate their analysis results.

The major contributions of this thesis lie in two perspectives.

First, from the perspective of visual analytics, we have made the following achievements: 1)

related state-of-the-art information visualization techniques, particularly the visual analytics
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for movement data and visualizations of urban traffic, have been summarized in Chapter 2;

2) a family of novel visual representations has been proposed to visualize the input transport

data, i.e., the interchange circos diagram in Chapter 4, the waypoints-constrained OD view in

Chapter 5 and an integrated visual analytics with isochrone map view, isotime flow map view,

and OD-pair journey view in Chapter 6; 3) correspondingly, a family of user interactions has

been developed to allow the transport researchers to interactively explore the visualizations;

and 4) the applicability and limitations of these visual analytics have also been discussed.

Second, from the perspective of application domain, i.e., transport in this thesis, we have

achieved the following successes: 1) a set of analytical tasks has been identified from transport

researchers, i.e., to reveal commuter interchange patterns at junction nodes in a traffic network

(Chapter 4), to explore the OD patterns associated with commuter trajectories successively

passing through users-specified entry and exit waypoints in a transport network (Chapter 5),

and to present mobility information of a PTS (Chapter 6); 2) with effective data modeling and

mining techniques, the task-related information has been successfully extracted from the input

public transport dataset; and 3) the extracted information has been successfully depicted with

novel visualization methods in an efficient and intuitive way, such as the interchange circos

diagram and isotime flow map view.

7.3 Future Work

There is still space to improve the current visual analytics systems. For instance, the mobility

visual analyticss system (Chapter 6) presents only waiting time, riding time, transfer time and

travel efficiency along time-efficient journeys. In the future, we would like to explore other

transport attributes such as vehicle capacity and commuter composition (e.g., senior, student,

and disabled). Moreover, we also plan to extend the system for real-time analysis of PTS

mobility, so that we may deliver adaptive journey planning for commuters.
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The thesis has mainly explored the visual analytics for three different aspects of a PTS, i.e.,

the interchange patterns, waypoint-constrained OD patterns, and mobility. In other words, we

have only addressed some of the analytical tasks that are interesting for transport researchers.

There remain open researches for visualization communities to develop visual analytics for the

researchers to analyze the urban public transport data. One example would be to develop a

visual analytical system to explore and analyze commuter route choice model. In more detail,

given an OD pair, there maybe multiple routes selected by commuters due to their different

traveling preferences. We would like to extract all these possible routes from the input dataset,

and explore and visualize the factors affecting the commuter choice.

Besides, visual fusion of the public transport data with other kinds of mega-city big data, e.g.,

social media data, may provide more insights for explaining commuters’ behaviors. For in-

stance, Krueger et al. [73] showed how semantic insights can be gained by enriching trajectory

data with POI information extracted from Foursquare data. It is worth to explore the possibili-

ties in integrating these different kinds of dataset.

What’s more, we believe that nowadays the availability of wide range visual displays, e.g.,

from small screens on mobile phones to extra-large displays, calls for new visualization and

interaction methods for exploring the public transport data. We would also like to work in this

direction as a long-term work.

110



References

[1] Nobbir Ahmed and Harvey J. Miller. Time–space transformations of geographic space

for exploring, analyzing and visualizing transportation systems. Journal of Transport

Geography, 15(1):2–17, January 2007.

[2] Wolfgang Aigner, Silvia Miksch, Wolfgang Müller, Heidrun Schumann, and Christian

Tominski. Visual methods for analyzing time-oriented data. IEEE Transactions on

Visualization and Computer Graphics, 14(1):47–60, January 2008.

[3] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski. Visual-

ization of time-oriented data. Springer, 2011.
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