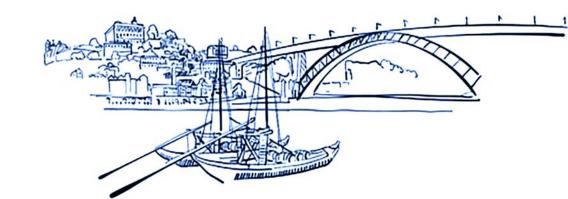


Route-Aware Edge Bundling for Visualizing Origin-Destination Trails in Urban Traffic

<u>Wei Zeng¹</u>, Qiaomu Shen², Yuzhe Jiang², Alex Telea³

- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences 1.
- The Hong Kong University of Science and Technology 2
- University of Groningen 3.



Contents

Introduction

- o OD Trails in Urban Traffic
- Prior Edge Bundling Methods
- Limitations of KDEEB

Route-Aware Edge Bundling

- Preprocessing:
 - \blacktriangleright map matching \rightarrow hierarchical route structure construction \rightarrow trail abstraction
- \circ Bundling
 - \blacktriangleright optimal kernel size setting \rightarrow density map generation
- \circ Evaluation
 - Bundle termination
 - Bundle deviation

Conclusion and Future Work

Contents

Introduction

- o OD Trails in Urban Traffic
- Prior Edge Bundling Methods
- Limitations of KDEEB

Route-Aware Edge Bundling

- Preprocessing:
 - > map matching \rightarrow hierarchical route structure construction \rightarrow trail abstraction
- \circ Bundling
 - \blacktriangleright optimal kernel size setting \rightarrow density map generation
- \circ Evaluation
 - Bundle termination
 - Bundle deviation

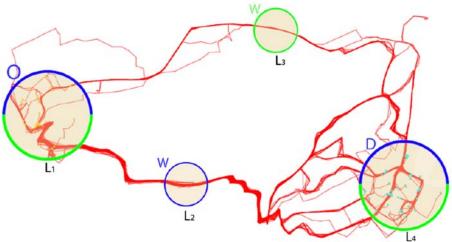
Conclusion and Future Work

OD Trails in Urban Traffic

- Urban traffic data, e.g.,
 - Taxi trips in New York, Beijing, Shenzhen
 - Public transportation data in Singapore
 - Electric scooter tracks in Stuttgart



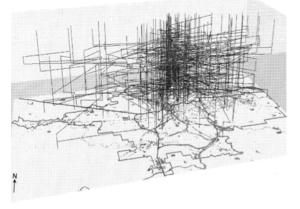
- Origin-destination (OD) is a fundamental concept in transportation, summarizing (people/vehicle/good) movements across geographic locations.
- Properties of OD trails in urban traffic
 - Locations
 - o Times
 - Road network
 - o Multi-modes



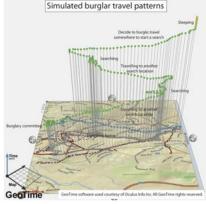
[Krüger et al., 2013]

OD Trail Visualization

- Density Map
 - Summarize trajectories and overview distribution.
- Spatial Aggregation
 - Partition underlying territory into appropriate areas.
- Map Matching
 - $\circ~$ Align position records with road network data.
- Direct depiction
 - Directly plot trajectories into 2D/3D displays.

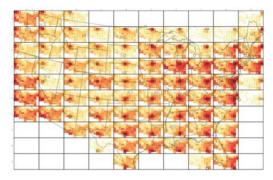


[Kwan, 2000]



[Kapler and Wright, 2004]

[Scheepens et al., 2011]



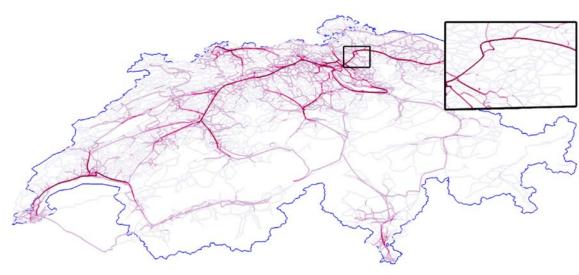
[Wood et al., 2010]

[Andrienko and Andrienko, 2011]

- Geometry-based methods: Use control mesh to specify how similar edges are routed.
 - Pros: Flexible to make control mesh
 - Cons: Constructing control mesh can be (very) slow
- Force-based methods: Model interaction between spatially close trails as a force field.
 - Pros: No need to make external control mesh
 - Cons: Slow cannot handle a few thousands trails at interactive rates
- Image-based methods: Employ image-processing methods to accelerate the bundling process.
 - Pros: Feasible for GPU implementation can process millions of trials at interactive rates.
 - Cons: No consideration of spatial constraints when applied to OD trails.

Prior Edge Bundling Methods

- Constrained Bundling: Specific constraints are considered.
 - \circ Ambiguity
 - \circ 3D curved surfaces
 - \circ Directions
 - o Obstacles avoidance
 - \circ Vector map



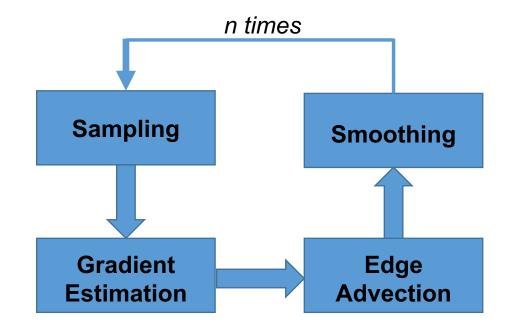
Vector map for Swiss commuter data [Thöny & Pajarola, 2015]

Kernel Density Estimation Edge Bundling (KDEEB)

- We chose KDEEB for the basis of our method:
 - \circ $\,$ Fast in speed, meanwhile simple enough to implement $\,$
 - Be able to incorporate specific constraints
- KDEEB pipeline
 - \circ Sampling
 - o Gradient estimation

$$\rho(\mathbf{x} \in \mathbb{R}^2) = \sum_{\mathbf{y} \in D} K\left(\frac{\|\mathbf{x} - \mathbf{y}\|}{p_r}\right)$$

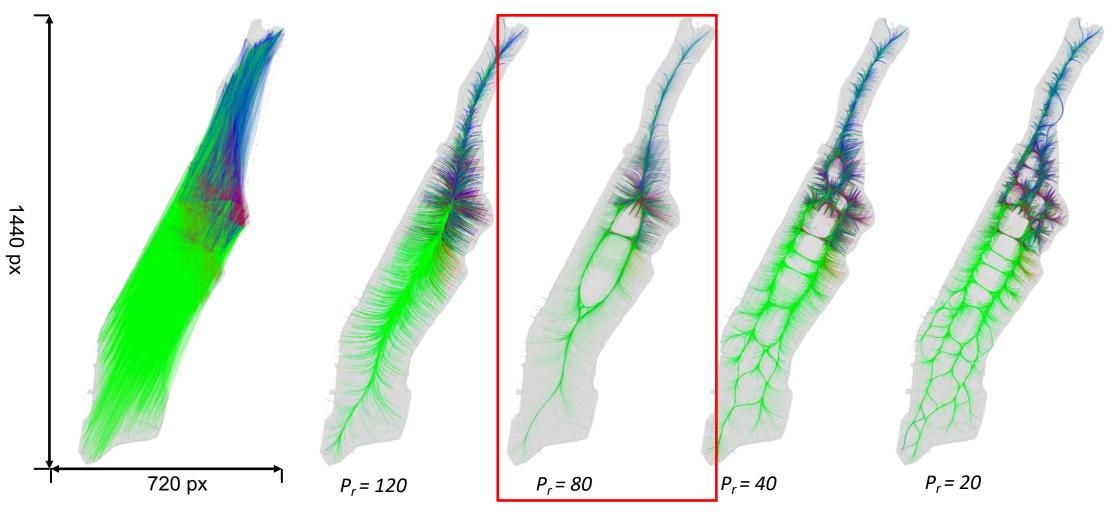
- o Advection
- \circ Smoothing
- Iterate *n* times until stable layout
 - \circ Predefined 10 or 15 times
 - Automatically determined at runtime?



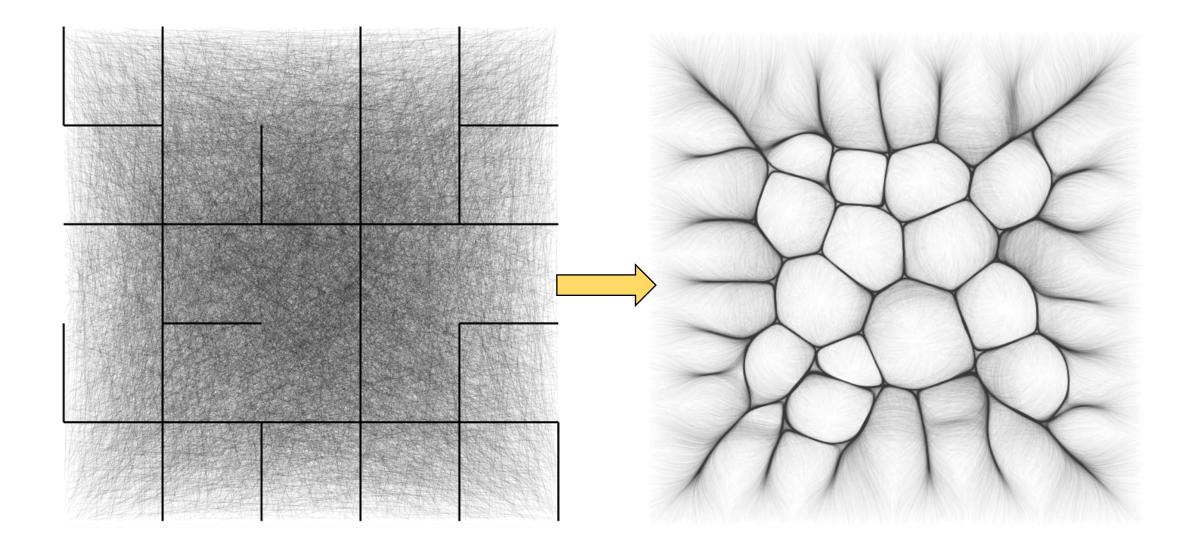
Limitations of KDEEB: What is a suitable pr?

• KDEEB: 5% of graph drawing size

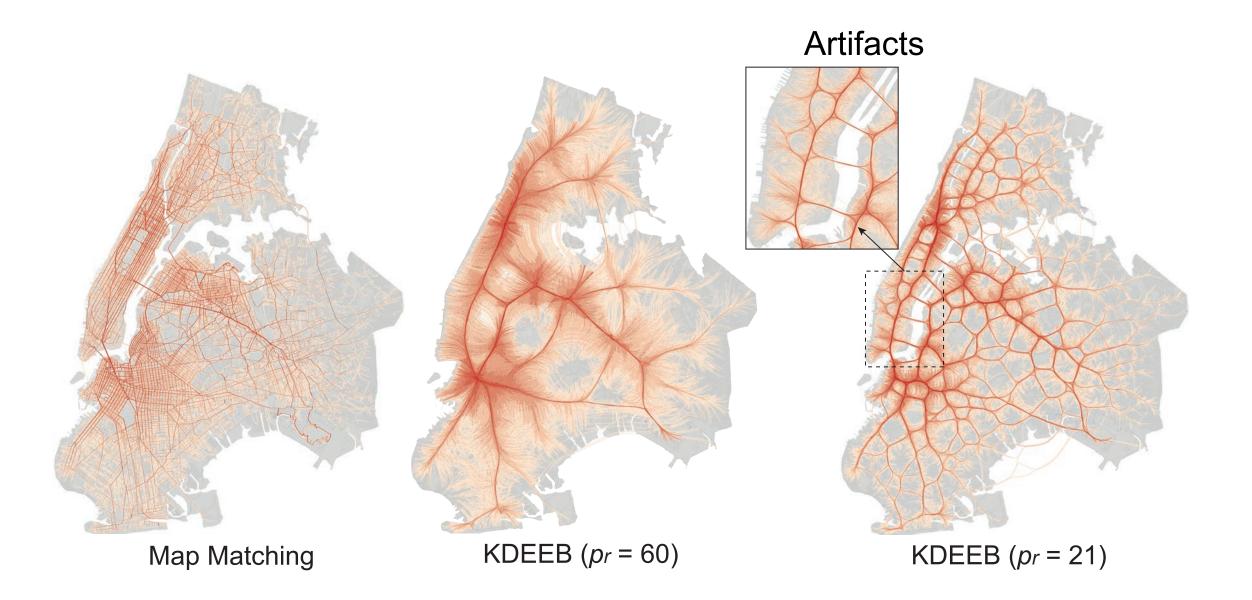
 $\circ \quad 5\% \times \sqrt{1440^2 + 720^2} = 80.5$



Limitations of KDEEB: Road neglect



Limitations of KDEEB



Contents

Introduction

- o OD Trails in Urban Traffic
- Prior Edge Bundling Methods
- Limitations of KDEEB

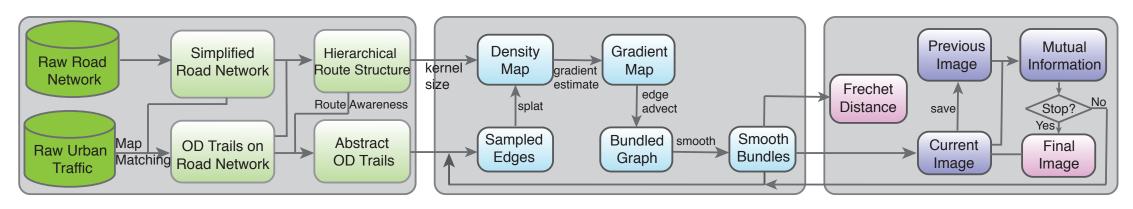
Route-Aware Edge Bundling

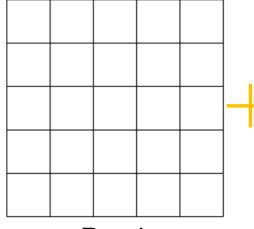
- Preprocessing:
 - \blacktriangleright map matching \rightarrow hierarchical route structure construction \rightarrow trail abstraction
- \circ Bundling
 - \blacktriangleright optimal kernel size setting \rightarrow density map generation
- \circ Evaluation
 - Bundle termination
 - Bundle deviation

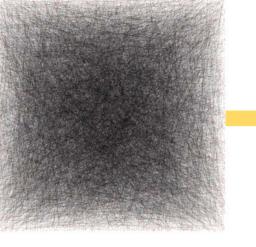
Conclusion and Future Work

Route-Aware Edge Bundling

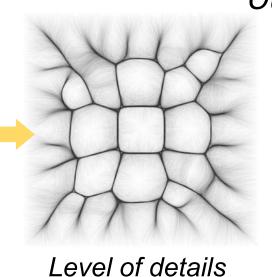
RAEB pipeline: 1) Preprocessing, 2) Bundling, and 3) Evaluation

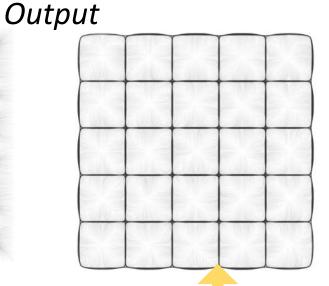






OD trails

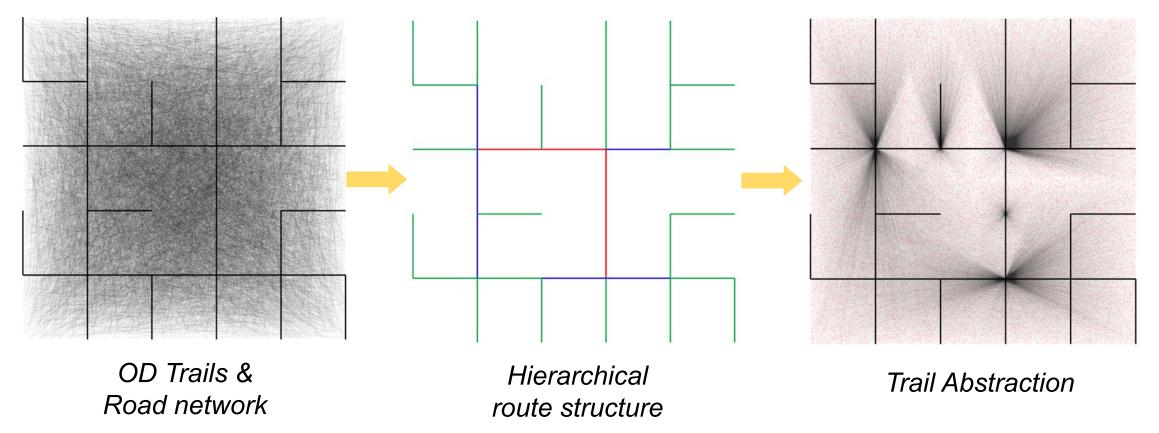




Road network

Preprocessing

- Build a simplified hierarchical road and traffic network representation.
 - \circ Map matching: shortest path for OD only, ST-matching for GPS traces
 - Hierarchical structure construction: route length, road hierarchy, flow magnitude
 - Trail abstraction: route awareness (p_{ra})

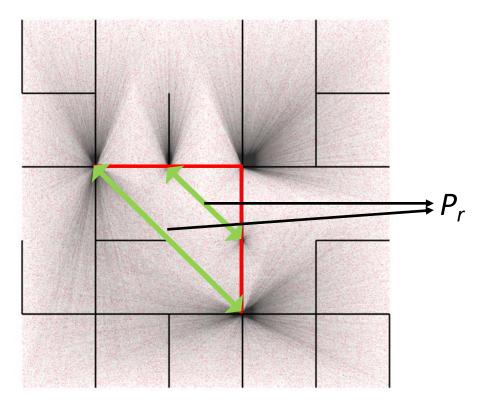


Bundling

- KDEEB applied to the hierarchical structure.
 - o Optimal kernel size setting
 - o Density map generation

$$\rho_{raeb}(\mathbf{x} \in \mathbb{R}^2) = \sum_{\mathbf{y} \in D} K\left(\frac{\|\mathbf{x} - \mathbf{y}\|}{p_r}\right) + \theta \sum_{\mathbf{r} \in R_{aware}} \Theta(\|\mathbf{x} - \mathbf{r}\|),$$

Algorithm 1 KernelSizeSetting **Input:** Top *N* routes $P = \{P_1, ..., P_N\}$ **Output:** Initial kernel size p_r 1: **for** i = 1 to *N* **do** for j = i + 1 to N do 2: 3: $d[i][j] = d[j][i] = \text{DiscreteFrechetDistance}(P_i, P_j)$ 4: $C = DBSCAN(P, \varepsilon, minNum);$ 5: $C_{max} = \operatorname{argmax}_{C_i \in C} |C_i|;$ 6: $d_{geo} = 0;$ 7: for each $P_i \in C_{max}$ do for each $P_j \in C_{max}$ && $i \neq j$ do 8: $d_{geo} = d_{geo} + d[i][j];$ 9: 10: $p_r = d_{geo}/|C_{max}|/(|C_{max}|-1)/2;$ 11: return p_r

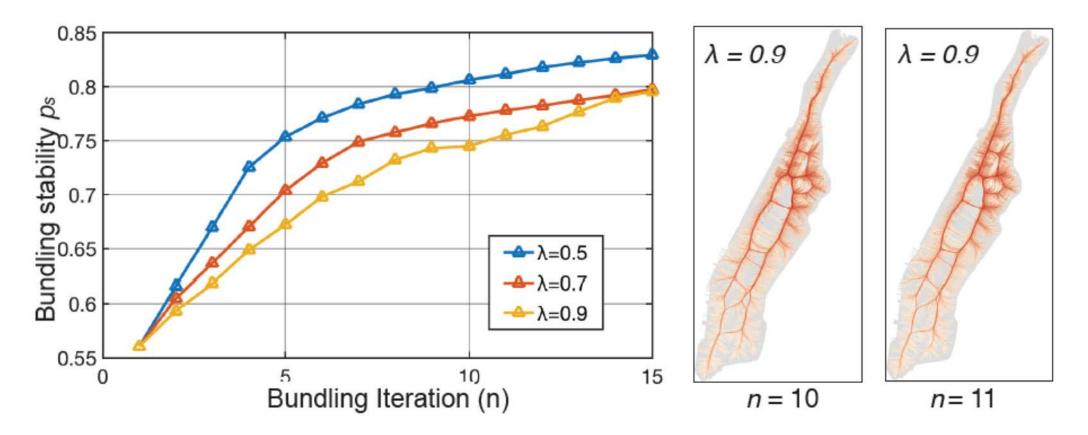


Evaluation

• Termination: Bundle stability (p_s) to determine when to stop iteration

Bunc

$$NMI(X,Y) = \frac{2MI(X,Y)}{H(X) + H(Y)} \qquad MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) log\left(\frac{p(x,y)}{p(x)p(y)}\right)^{\frac{1}{2}}$$



Contents

Introduction

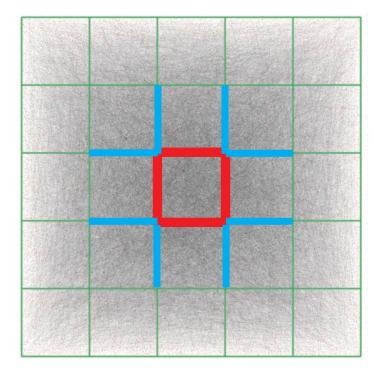
- o OD Trails in Urban Traffic
- Prior Edge Bundling Methods
- Limitations of KDEEB

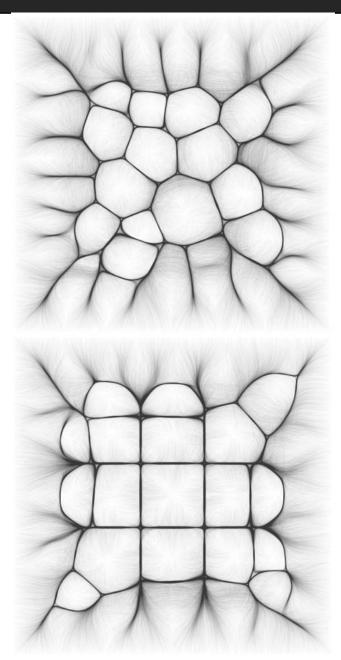
Route-Aware Edge Bundling

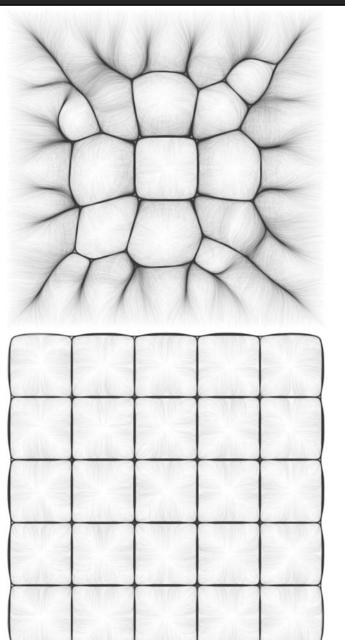
- Preprocessing:
 - \blacktriangleright map matching \rightarrow hierarchical route structure construction \rightarrow trail abstraction
- \circ Bundling
 - \blacktriangleright optimal kernel size setting \rightarrow density map generation
- \circ Evaluation
 - Bundle termination
 - Bundle deviation

Conclusion and Future Work

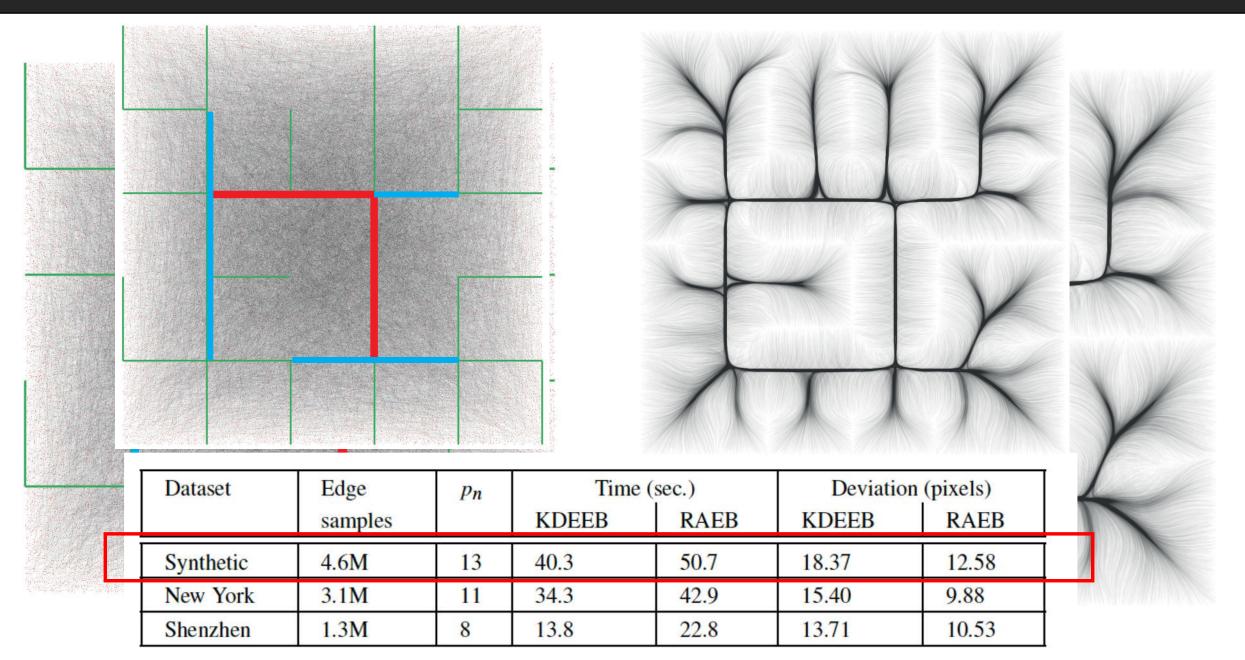
Application 1: Synthetic Data



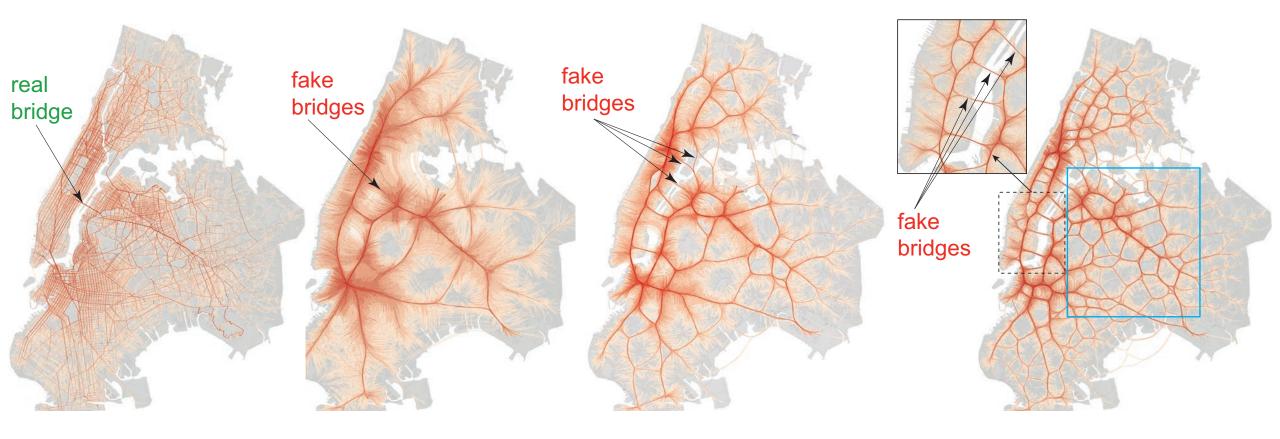




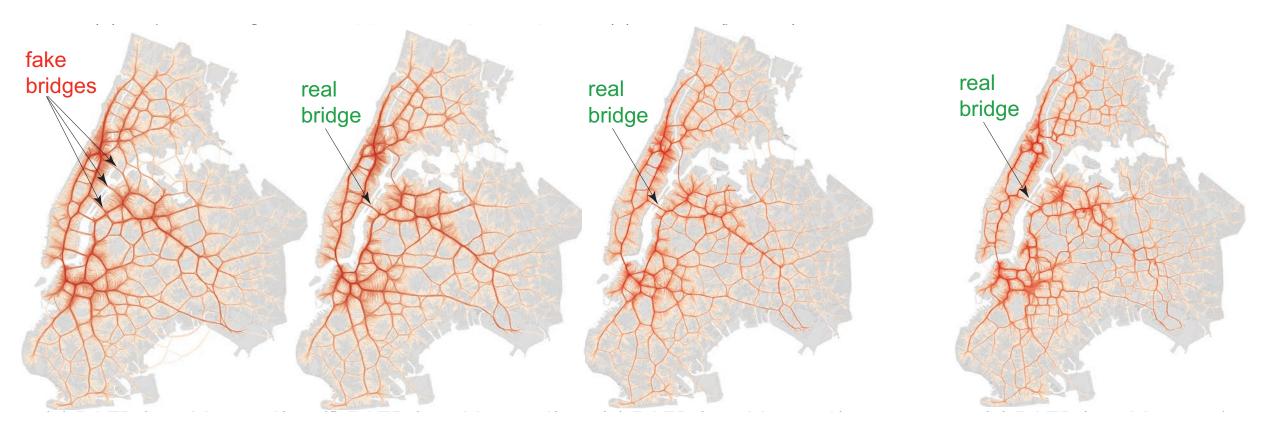
Application 1: Synthetic Data



Application 2: NYC Taxi

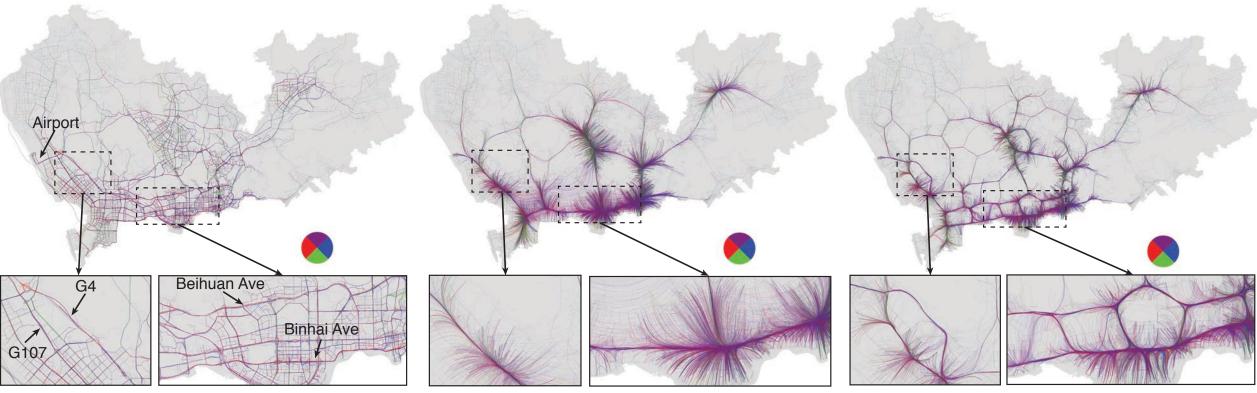


Application 2: NYC Taxi



	Dataset	Edge	Pn	Time (sec.)		Deviation (pixels)		Ι
		samples		KDEEB	RAEB	KDEEB	RAEB	
	Synthetic	4.6M	13	40.3	50.7	18.37	12.58]
	New York	3.1M	11	34.3	42.9	15.40	9.88]
L	Shenzhen	1.3M	8	13.8	22.8	13.71	10.53	

Application 3: Shenzhen Taxi



(a) Map Matching

(b) KDEEB

(c) RAEB

Dataset	Edge	Pn	Time (sec.)		Deviation (pixels)	
	samples		KDEEB	RAEB	KDEEB	RAEB
Synthetic	4.6M	13	40.3	50.7	18.37	12.58
New York	3.1M	11	34.3	42.9	15.40	9.88
Shenzhen	1.3M	8	13.8	22.8	13.71	10.53

Discussions

- RAEB constrains trails to a given road network
 - Route awareness (p_{ra}): controls how bundles follow roads at a user-selected hierarchy level.
 - Kernel size (p_r) : determined by both the road network geometry and its resolution in image space.
 - Bundling stability (p_s): automatically stops bundling when this similarity exceeds a given threshold.
- RAEB outperforms KDEEB on both synthetic and real OD trails
 - \circ Visually more realistic
 - Quantitively closer to ground-truth results
 - Comparable running time
- Limitations and future work
 - \circ Visual hints on bundle deformation
 - Incorporate directional bundling techniques
 - Local and adaptive parameter settings: p_{ra} and p_r

Dr. Zeng Wei

谢谢!

Thank You!

Associate Researcher

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

E-mail: <u>wei.zeng@siat.ac.cn</u> Web: <u>zeng-wei.com</u>